Version: 1.0
Date: 13/01/2026

REPUBLIC OF ALBANIA

NATIONAL CYBER SECURITY AUTHORITY
DIRECTORATE OF CYBER SECURITY ANALYSIS

Technical Analysis of a Malicious File
RalLord-0xb

TABLE OF CONTENTS

Technical INOrMALION c...ueeueeiruerieenitenisinnsenssnensneessnessnssssesssnsssssssasssssssssssssssssasssssssssssssssssassssaeses 3

Analysis of the RaLOrd-0XD Filecuiiiniinniiniiiiinninninnnensennnenneccssecnnecsessscssesssseeses 3

Indicators of Compromise (I0CS)ucenuenrennsnensnessnensnnssannsnesssesssnsssassssnssssssssssssassssassssssssssssases 8

ReCOMMENAATIONS c..ccoueeinuiiieiiiniiiiiisenistinsseiisseisessssessnssssesssessssessssssssssssassssesssassssssssassssasssssssanss 8
Figure 1. RUST programming language .3
Figure 2. File strings ..3
Figure 3. Execution via CMD 4
Figure 4. Code invocation 4
Figure 5. Ransomware note embedded in the file 4
Figure 6. Copying file data into buffer 5
Figure 7. Thread creation 5
Figure 8. Main code invocation 6
Figure 9. Calculated address 6
Figure 10. Encryption function Call.........ciiiiiniinsinnicsicsecssecssecnsscsssecssecsessssssssissssessssssssssasssssssssssss 7
Figure 11. Main function where encryption actually occurs w7

This report has limitations and should be interpreted with caution!
Identified Limitations:

Phase One:
Information Sources: This report is based on the information available at the time of its
preparation. Certain aspects may differ from current developments.

Phase Two:

Analysis Details: Due to resource constraints, some aspects of the malicious file may not have
been analyzed in depth. Any additional undiscovered information may lead to changes in the
report.

Phase Three:
Information Security: To protect sources and confidential information, some details have been
generalized or omitted. This decision was made to preserve data integrity and security.

The National Cyber Security Authority (AKSK) reserves the right to amend, update, or
modify any part of this report without prior notice.

This report is not a final document.

Its findings are based on information available during the investigation and analysis period. No
guarantees are provided regarding potential changes or updates to the reported information. The
authors bear no responsibility for misuse or consequences arising from decisions based on this
report.

Technical Information

The circulation of a cyberattack campaign using ransomware attributed to the NOVA Ransomware Group
has been identified, characterized by new techniques and tactics. This group first appeared in 2024, and its
activity demonstrates a focused attack methodology. The group combines system encryption with the
exfiltration of sensitive data, using threats of public exposure to increase and reinforce ransom demands.
From an operational perspective, Nova prioritizes efficiency over innovation, employing established
techniques such as disabling backups, stopping security services, and abusing legitimate administrative
tools to move laterally within compromised networks. Although still maintaining a low profile, Nova
demonstrates how new ransomware actors can rapidly conduct impactful cyberattacks by exploiting known
weaknesses in information infrastructure defenses.

Analysis of the RaLord-0xb File

The RaLord-0xb file is a Windows executable developed using the RUST programming
language.

File name

C:\Users\flare\Downloads\RaLord-0xb\RalLord-0xb.exe

File type File size Base address Entry point

PE64 v 376.00 KiB 0000000140000000 000000014003d40c | >

File info Memory map Disasm Strings Signatures VirusTotal
MIME Sea rch Entropy Extractor

| PE — Import | Resources .| H | TLS —

Sections Time date stamp Size of image

D005 > 2025-03-24 17:57:12 D0062000

Scan Endianness 0 Architecture Type

Automatic 13 -bi AMD64 Console

~ PE64
Compiler: Microsoft Visual C/C++(2022+)[-]
Compiler: Rust(x86_64-pc-windows-msvc)[-]
Linker: Microsoft Linker(14.43**)[Console64,console]

Figure 1. RUST programming language

Analysis of the file strings reveals that the malware initiates directory scanning on the operating
system and begins encrypting files based on the execution privileges granted to it.

Figure 2. File strings

This behavior is also observed when executing the file via CMD, where directory enumeration is
followed by the encryption process.

C:\Users\flare\Downloads\RaLord-8xb>RalLord-8xb.exe
Starting directory scan...
: C:\Users\flare\Downloads\RalLord-@xb\RaLord-0xb.exe - Delete: Access is denied. (os error 5)
C:\Users\flare\Downloads\RaLord-@xb\RaLord-0xb.exe - Delete: Access is denied. (os error 5)

: C:\Users\flare\Downloads\RaLord-@xb\RalLord-@xb.exe - Delete: Access is denied. [{ss error 5)
Scan completed in 7.07s

[
[
[
[
[
[

+]
1]
']
1] y C:\Users\flare\Downloads\RaLord-@xb\RaLord-@xb.exe - Delete: Access is denied. (os error 5)
1]
+]

Ne
FLARE-VM Mon 01/

Figure 3. Execution via CMD

During analysis, the function FUN_140007e90 was identified as the main function responsible for
invoking the malicious code. This is evident from the portion of the code where it expects the
parameter param_1. Static analysis reveals that param 1 = &LAB 140006230, meaning the
relevant code is located at the label LAB_140006230.

void FUN_140007e90 (undefined *param_ 1)

{
I (* (code *)param 1) ()]
e

turn;

}

Figure 4. Code invocation

At this label, the malicious code becomes visible, including the hardcoded ransomware note
embedded within the file. The same function also contains the previously identified strings:

"[+] Starting directory scan..."

"[+] Scan completed in ..."

"[!] Error creating README: ..."

The encryption process begins with the function FUN_14000c8e0.

ppuvar5 = (undefined *&#*+ii)
FUN_14000a4f0 (épppppuStack dB
(undefined **)
L —
———————————— BAordiErnn s e

\n-> Hello , without any p

its mean you under controll by RLor

stolen and everything done , but\n-

over the files by contact us and pay the ransom , the d

talk about files\n-> also , we will provide repo

-k operation and hos our security\n-

—==———=\n>>> contact us here :\n

ESB4

C904CS5SBCT74F7330659537465DSCEA22541CAGOAC162BBD42A20F4C0 2AC\n—————
————————— \n>>> important notes : \n-> please do not t« -he file

ypt it if you touch it\n-> please itact us

operation should start \n—> in nigotable ple

e make sure to accept our rules,

y\n———————————— \n>>>

r websites : \n-> mirror 1 : ralord

v2dkavss2Zhjzviviwgsf4anfdn
if3cuqd.onion\n-> mirror 2 : ralordge33mpufkpsrézkdatktl

rd.on \n-> mirror 3 : ralordt7gywtkkkkq

gltyj2laiunid.onion\n-> to enter this URLs

ou need to download tor : https://www.torproject.org/download/\n——

Figure 5. Ransomware note embedded in the file

FUN_14000c8e0 represents the starting point of actual file processing. However, the encryption
algorithm itself is not implemented directly in this function. Instead, file data is copied into a
private buffer, as shown below, followed by the preparation of metadata / nonce / IV
(cryptographic header or auxiliary encryption structure).

_Src = *(void **)(param_2 + 0x18);
sVarl = *(size_t *)(param_2 + 0x20);

local 30 = Oxfffffffffffffffe;

I_.:‘-;-_- = ¥(void **) (param 2 + 0x18);

Varl = *(size_t *) (param 2 + 0x20);

local 48
if ((longlong)=Varl < 0) {

5 = 0=

1Vars O;

LAB_14000caec:

e — 312 = 1;

m_14004l323('_"a:':,E'.':—.rl,&_:I‘?_ s C:\Users\scorp\.rustup\toolchain 140044a88);

/* WARNING: Does not return */

Figure 6. Copying file data into buffer

A critical function is FUN_14002¢d60, which creates a new thread and assigns it a function to
execute. LAB_14002cf00 serves as the thread’s entry point, initiating the encryption chain.

undefineds FUN_lQ'ZlDchE.D{SJ:Z.E_T param_1,undefinedBf param 2,undefinedB param 3)

{
LPVOID pvVarl;

2
3
4
5
6| undefined8 *puVarl;
7
B
El

code *pcVarl;
undefineds8 *lpParameter;
HANDLE pwvVar4;
L0| undefined8 uvVar5;
i
2| lpParamster = (undefined8 *)thunk FUN_14002%330(0x10,8);
L3| if (lpParameter |= (undefinedB8 *)0Ox0) {
4 *lpParameter = param 2;
LS lpParameter[l] = param_3;
6| ,ulazs = 0
n7 ovVar4 = CreateThread ((LE’SECURII'Y_ATTRIB:TESJ 'Jx),pcl_tcur._l, {LPTEREED_STBRT_ROUTINE} &TAB 14002
e lpParameter 0x10000 (LPOWORD) Oxd) -
e if (pvVar4 == (HANDLE)Ox0O) {

go pvVarl = (LBVOID)*lpParamster;

Figure 7. Thread creation

At this stage, functions are executed sequentially until the final function containing the encryption

algorithm is reached.

Figure 8. Main code invocation

By identifying the correct address, the parameter IStack_20 is observed, and by performing a
calculation qword at PTR_FUN_140045848 + 0x18 = 0x140011790; 0x0000000140011790 is
the correct address, as illustrated in the figure below.

> —> 1400J11790
1 |

Figure 9. Calculated address

Following the function flow step by step, encryption occurs within FUN_140004760, which:

Opens the file (Read / Open)
Creates a 0x100000 (1 MB) buffer
local 140 = malloc(0x100000);
Main loop (file processing loop)

Specifically, the function FUN_140013dd0 calls the core function FUN_14001b630, which
contains the complete encryption logic.

Dacompile:

FLN_140004760 - (RalLord-Oub.exe) g si. R0

(undefined +4&bibddddadidd)
CONCATZE (uStack_102,
CONCAT1S (uStack 103,
COMCAT14 (uStack_104,
COMCAT13 (uStack 105,
CONCRT12 (uStack_L0&,
CONCAT11 (u3tack 107,ultack 108)))))):

if ((undefined *#+svsssssasin)
FUN_1400417d0 (pppr
goto LAR 140005B00;
}

cVard = FUN_140013dd0 ((undefinedd4 *)&local 1cB, (undefinedd *)&
(longlong) local 140, (ulonglong)p
EffFFFFFFfsfsf

10z

rfl, (uint3 *)0x0,

+ (longlong) local_ct,

Figure 10. Encryption function call

Dacompile: FUN_140013dd0 - (RaLord-0xb.exa) 6 ,:. Ro |;| | i
16 undefined8 loca 8 ;
17| undefined8 local €8;
18| undefined8 uStack &0;
19| undefinedf lo
20| undefined8 us
21| undefinedf loca
22| undefined8 local 40;
23
24| local 40 = OxELfEEELEFEEEEEEfe;
25 FUN_140018600(&local cB,param 1 ,param 2);
26 local 48 = local af;
27 cal_58 = local_ké&;
28] us H
29 lo
30 . H
31 1o _
32 local_a0;
33 uStack 80 = uStack 58;
34 FUN_14001b6&30((undefined4 *)&local €8, &local BB, param_ 3,param_4,param 5,param_&,param_ 7,param B8
)
35 return;
36|}

Figure 11. Main function where encryption actually occurs

If we analyze the core function FUN_14001b630, where file encryption takes place, we can
conclude that it uses ChaCha20 for encryption combined with Poly1305 for authentication
(MACQ).

e 64-byte (0x40) blocks, typical of ChaCha20
if (local_148 <0x40) { ... }

local 148 =local 148 - 0x40;

IVar20 =local_140 + 0x40;

1IVar24 =1Var24 + 0x40;

¢ XORs the keystream with the plaintext

* Dst=* Dst” *puVarl;

_Dst[1] = _Dst[1] * uVar25;

e The counter is incremented for each block

FUN_140017000(local_128, iVar29, (uint *)&local 188, 0x40);
1Var29 = block counter

e Generates a keystream for each block

ChaCha20 counter-based keystream

« Poly1305 MAC né fund (16 byte TAG)

if (param_8 < param_4 + 0x10) return error;
FUN_140018e30((longlong)local_d8, ..., 0x10);

e +0x10 =16 byte tag
e Authentication check

Poly1305 = 16-byte MAC

Indicators of Compromise (IoCs)

456B9ADAABAEIYF3DCE2207AA71410987F0A571CD8C11F2E7B414685 | RaLord-0xb.exe

01A863606

794807D348783FDA909C94D28458A7325D2C57644DF17289729BC8158B | RaLord-0xb.zip

B4B3AA

a917011127899¢33¢694829d63b02dS8e53d951154dfdf70f4ce0aSb4faaf9ef README-

Recommendations

The National Cyber Security Authority recommends:

Immediate blocking of the above-mentioned Indicators of Compromise on security devices.
Continuous analysis of logs generated by SIEM (Security Information and Event Management)
systems.

Training non-technical staff on phishing attacks and methods to avoid infection.

Deployment of network perimeter security devices capable of deep traffic inspection, based
not only on access control rules but also on behavioral analysis (Next-Generation Firewalls).
Segmentation of identified systems into different VLANs, applying Access Control Lists
across the entire network perimeter. Web services should be separated from their databases,
and Active Directory should reside in a dedicated VLAN.

Implementation of LAPS (Local Administrator Password Solution) for Microsoft systems to
manage local administrator passwords.

Application of traffic filtering for remote access to hosts (employees / third parties / clients).
Deployment of solutions that filter, monitor, and block malicious traffic between web
applications and the internet, such as Web Application Firewalls (WAF).

Behavioral-level traffic analysis for endpoint devices through EDR/XDR solutions, enabling
malware detection beyond signature-based methods.

Design and implementation of Identity and Access Management (IAM) solutions to control
user identities and privileges in real time, based on the Zero Trust principle.

XeBY311RpMRQ.txt

