

REPUBLIC OF ALBANIA

NATIONAL AUTHORITY FOR CYBER SECURITY

DIRECTORATE OF CYBER SECURITY ANALYSIS

Technical Analysis of the Malicious File

Lumma Stealer

Version: 1.0

Data: 02/07/2025

Address: “Papa Gjon Pali II” Street, No. 3, Tira na; www.aksk.gov.al

info@aksk.gov.al; Tel./Fax: 04 2221 039
1

CONTENTS

Technical Information ... 3

Analiza e skedarit Setup.exe... 3

MITRE ATT&CK ... 13

Indicators of Compromise ... 13

Recommendations .. 14

LIST OF FIGURES

Figure 1: Nullsoft Scriptable... 3
Figure 2: Extraction of setup.exe .. 3
Figure 3: Use of ExecShell and SW_HIDE .. 4
Figure 4: .midi files ... 4
Figure 5: Mike.midi.bat .. 5
Figure 6: Creation of New File (1) ... 5
Figure 7: Creation of New File (2) ... 5
Figure 8: Start of File Execution... 6
Figure 9: AutoIT ... 6
Figura 10: Detection of the AutoIT File Type .. 7
Figure 11: NAMACCEPT Function .. 7
Figure 12: Reverse NAMACCEPT.py ... 8
Figure 13: jdqmdk21-ckk.. 9
Figure 14: shellcode .. 9
Figure 15: VirtualAddress... 10
Figure 16: user32.dll ... 10
Figure 17: Shellcode Variable... 10
Figure 18: REALLYFAQSSERIALOWNS Function .. 11
Figure 19: Extraction of Browser Credentials .. 11
Figure 20 Reading of FTP Login Credentials ... 11
Figure 21: Reading of Crypto Wallets .. 12
Figure 22: Reading of Mail Credentials.. 12

http://www.aksk.gov.al/
mailto:info@aksk.gov.al

Address: “Papa Gjon Pali II” Street, No. 3, Tira na; www.aksk.gov.al

info@aksk.gov.al; Tel./Fax: 04 2221 039
2

This report contains limitations and should be interpreted with caution.

Some of these limitations include:

Phase One – Information Sources:

This report is based on the information available at the time of its preparation. As such, certain
aspects may differ from current or future developments.

Phase Two – Depth of Analysis:
Due to resource constraints, some components of the malicious file may not have been analyzed

in depth. Any unknown or additional information may lead to updates or changes in the report’s
conclusions.

Phase Three – Information Security:

To protect sources and confidential information, certain details may be redacted or omitted from
the report. This decision is made to preserve the integrity and security of the data used.

The National Authority for Cyber Security (AKSK) reserves the right to modify, update, or

revise any part of this report without prior notice.

This document does not constitute a final or definitive report.
The findings are based on the information available at the time of investigation and analysis. No
guarantee can be made regarding potential changes or updates to the reported information in the

future. The authors of the report assume no responsibility for any misuse or decisions based on
the content of this document.

http://www.aksk.gov.al/
mailto:info@aksk.gov.al

Address: “Papa Gjon Pali II” Street, No. 3, Tira na; www.aksk.gov.al

info@aksk.gov.al; Tel./Fax: 04 2221 039
3

Technical Information

Lumma Stealer (also known as LummaC2) is a malicious file belonging to the Infostealer
category, designed to steal sensitive data from compromised devices. This malware has been

developed and distributed across various forums (including the dark web), often provided as
Malware-as-a-Service (MaaS). It is equipped with advanced capabilities to collect information

such as: browser credentials, cookies, autofill data, password manager records, cryptocurrency
wallets, and profiles from well-known applications like Telegram and Discord.

Analiza e skedarit Setup.exe

setup.exe is an executable file with the hash value:

974a6af4f91d5d99d7501059907d64aa3882981dab350ad3f654ece13ed18f1f. If this file is

renamed and its extension is changed from .exe to .7z, and then extracted, it reveals a file with
the .nsi extension and a directory named $TEMP.

Figure 1: Nullsoft Scriptable

Figure 2: Extraction of setup.exe

If we analyze the file [NSIS].nsi, we will observe that it is an NSIS (Nullsoft Scriptable Install

System) script — a system commonly used for creating installers for Windows. This file is
heavily obfuscated and contains variable names with no meaningful context. However, it clearly

uses commands such as ExecShell ... SW_HIDE, which are designed to execute files without

http://www.aksk.gov.al/
mailto:info@aksk.gov.al

Address: “Papa Gjon Pali II” Street, No. 3, Tira na; www.aksk.gov.al

info@aksk.gov.al; Tel./Fax: 04 2221 039
4

displaying any output to the user — a widely used technique in the distribution of malicious
files.

Figure 3: Use of ExecShell and SW_HIDE

In the $TEMP directory, several files with the .midi extension can be found, whose names are
also referenced in the previously mentioned .nsi script.

Figure 4: .midi files

The file that contains hidden text — and is in fact a batch (.bat) file, not a true .midi file — is named
Mike.midi. Within this file, there are several key commands such as set, start, and findstr, which clearly
indicate that we are dealing with a batch script.
This assumption is confirmed in the original .nsi file, where a line of code appears as follows:

ExecShell open $SYSDIR\c$_2_d $_3_M$_4_e.midi.bat SW_HIDE.

http://www.aksk.gov.al/
mailto:info@aksk.gov.al

Address: “Papa Gjon Pali II” Street, No. 3, Tira na; www.aksk.gov.al

info@aksk.gov.al; Tel./Fax: 04 2221 039
5

Figure 5: Mike.midi.bat

 set %Fm%p ="MZ": Creates a variable with the value "MZ" (the beginning of every executable

in Windows).
 > %Stands%\%JNEoIBWjfqiMdvrUUInXwxnOkIbkjyMUWd%: Writes this value into a file
at a path constructed using variables. This file may be a dropper, meaning a file that will later expand into
shellcode or a full payload.

MZ is the magic number for .exe files in Windows, so this is a first step in building an executable
on disk from a script.

If we attempt to execute the file Mike.midi.bat, several other files will appear in the directory, such
as:

Bahrain, Couple, Disney, Frame, Grew, Hostles, Maintain, Taxi, Turtle, Vg — which for the
moment have no specific meaning.
To see exactly what happens with the .bat file, we need to modify its code by adding parts such as

echo and pause.

Figure 6: Creation of New File (1)

Thus, a file is dynamically created, resulting from the merging of several files into a single one.

Additionally, in the next phase, the merging of other previously shown files will also be observed.

Figure 7: Creation of New File (2)

http://www.aksk.gov.al/
mailto:info@aksk.gov.al

Address: “Papa Gjon Pali II” Street, No. 3, Tira na; www.aksk.gov.al

info@aksk.gov.al; Tel./Fax: 04 2221 039
6

Thus, during execution, two files are dynamically created — namely
AeKGyRcAMwUmEbxrKMkrfnYhKy and JNEoIBWjfqiMdvrUUInXwxnOkIbkjyMUWd

— along with a directory named 122648.
If we follow the execution, we will also observe a “start” command, where it is evident that the

file JNEoIBWjfqiMdvrUUInXwxnOkIbkjyMUWd takes the file
AeKGyRcAMwUmEbxrKMkrfnYhKy as a parameter.

Figure 8: Start of File Execution

To understand what is happening, we rename the first file and change its extension to .exe, and
we observe that it automatically adopts the AutoIT application icon.
AutoIT is a simple scripting language that allows:

• Automation of tasks in Windows

• Simulation of keyboard, mouse, and window interactions
• Creation of GUIs (graphical windows) and installers

However, it is often abused for the creation of malicious files.

* How does it work?

• Scripts are written in .au3 files
• They can be compiled into .exe using Aut2Exe (to convert them into a Windows
application)

• They can be integrated with the SciTE editor for easier programming

Figure 9: AutoIT

This gives us a clearer idea of the role of the second file,

AeKGyRcAMwUmEbxrKMkrfnYhKy.
While analyzing the file's strings, we observe a specific string segment: 00075FD2 AU3!EA06,
indicating that this is a file compiled with AutoIT.

Therefore, we need to decompile it in order to analyze the code being executed.

http://www.aksk.gov.al/
mailto:info@aksk.gov.al

Address: “Papa Gjon Pali II” Street, No. 3, Tira na; www.aksk.gov.al

info@aksk.gov.al; Tel./Fax: 04 2221 039
7

Figur 10: Detection of the AutoIT File Type

The decompiled code is heavily obfuscated, and many functions serve the purpose of hiding
logic and making the analysis more difficult.

The most frequently used function is NAMACCEPT, which takes two parameters.
To observe the behavior of this function, we write our own identical code in Python to display
the outputs.

Additionally, the file contains calls to DLLs (Dynamic Link Libraries) using DllCall.

Figure 11: NAMACCEPT Function

http://www.aksk.gov.al/
mailto:info@aksk.gov.al

Address: “Papa Gjon Pali II” Street, No. 3, Tira na; www.aksk.gov.al

info@aksk.gov.al; Tel./Fax: 04 2221 039
8

Figure 12: Reverse NAMACCEPT.py

This function takes an encoded string in the form of numbers separated by "E", along with a key.
It subtracts the key from each number and converts the result into a textual character to recover

the original message.

During testing with various values, the following were identified:

dword Size;

dword Usage;

dword ProcessID;

ulong_ptr DefaultHeapID;

dword ModuleID;

dword Threads;

dword ParentProcessID;

long PriClassBase;

dword Flags;

char ExeFile[260];

1. The PROCESSENTRY32 Structure in Shellcode
When a shellcode includes this structure — often encoded or hidden — its purpose is to analyze

the processes that are active in the system.
Once the attacker has this list, they can choose a process in which to inject their shellcode
stealthily, e.g., into a legitimate process like explorer.exe or svchost.exe.

This is a common practice before performing a shellcode injection, where the attacker attempts

to inject their code into a trusted system process (e.g., explorer.exe) to ensure persistence or to
evade detection by security mechanisms.

http://www.aksk.gov.al/
mailto:info@aksk.gov.al

Address: “Papa Gjon Pali II” Street, No. 3, Tira na; www.aksk.gov.al

info@aksk.gov.al; Tel./Fax: 04 2221 039
9

The presence of the field ExeFile[260] supports this hypothesis, as it identifies the name of the
executable of the target process for injection.

Figure 13: jdqmdk21-ckk

jdqmdk21-ckk is simply an encoded string that hides the name of the standard Windows library:

Windows: kernel32.dll.
This string has been observed in a segment of Meterpreter shellcode
https://blog.restkhz.com/post/glance-at-shellcode-3.

Figure 14: shellcode

This code is a typical example of a shellcode loader, which uses obfuscation techniques to evade

detection by antivirus or security systems.

*Purpose of the Code

This program:

http://www.aksk.gov.al/
mailto:info@aksk.gov.al
https://blog.restkhz.com/post/glance-at-shellcode-3

Address: “Papa Gjon Pali II” Street, No. 3, Tira na; www.aksk.gov.al

info@aksk.gov.al; Tel./Fax: 04 2221 039
10

1. Decodes the hidden strings for Windows API functions (VirtualAlloc,

CreateThread, etc.)

2. Decodes the shellcode

3. Allocates executable memory via VirtualAlloc

4. Copies the shellcode into the allocated memory

5. Executes the shellcode using CreateThread

If we continue extracting other strings from our Python code, we will also observe outputs such
as VirtualAddress, user32.dll, indicating that we are dealing with function and library calls

from the Windows system itself.

Figure 15: VirtualAddress

Figure 16: user32.dll

Additionally, in the main part of the decompiled file, we can identify a variable named

$tfjccxwtmwwi.
This file contains a very large number of character strings, which are concatenated during
execution and passed as a parameter to the function Binary().

This suggests that we are dealing with a shellcode that is decoded at runtime.
The output of the Binary function is then passed to several other complex functions, as

demonstrated in the following part of the code.
REALLYFAQSSERIALOWNS(REPRESENTEDPERSIAN(GUYANAKGDEFENSIVE(B

inary($tfjccxwtmwwi).

Figure 17: Shellcode Variable

http://www.aksk.gov.al/
mailto:info@aksk.gov.al

Address: “Papa Gjon Pali II” Street, No. 3, Tira na; www.aksk.gov.al

info@aksk.gov.al; Tel./Fax: 04 2221 039
11

Figure 18: REALLYFAQSSERIALOWNS Function

Each function has its own implementation, and the payload is transformed and decoded until it

reaches the final stage.
This indicates the highly polymorphic nature of this malicious file, which is why a more
automated analysis in a Sandbox is required to observe what happens in the final phase.

During sandbox analysis, it was observed that there is communication with the domain
drafxc[.]xyz, which serves as the Command and Control (C2) server.

The injection of Lumma-Stealer was detected within the legitimate chrome.exe process.

Figure 19: Extraction of Browser Credentials

Figure 20 Reading of FTP Login Credentials

http://www.aksk.gov.al/
mailto:info@aksk.gov.al

Address: “Papa Gjon Pali II” Street, No. 3, Tira na; www.aksk.gov.al

info@aksk.gov.al; Tel./Fax: 04 2221 039
12

Figure 21: Reading of Crypto Wallets

Figure 22: Reading of Mail Credentials

Communication was identified through a Telegram channel, specifically:

https://t.me/njkwevnfv32v432132. After all the sensitive information of the compromised user is
read, it is sent to this channel.

http://www.aksk.gov.al/
mailto:info@aksk.gov.al
https://t.me/njkwevnfv32v432132

Address: “Papa Gjon Pali II” Street, No. 3, Tira na; www.aksk.gov.al

info@aksk.gov.al; Tel./Fax: 04 2221 039
13

MITRE ATT&CK

Indicators of Compromise

BB68002A0DD100649BFB77AEAE875CD084B7EFDCDCA7C5A

A2CF7F4C4A6A73C04

AeKGyRcAMwUm

EbxrKMkrfnYhKy

AA855EB28018AC7AECCB992AF417D7FAD057D19AE43CD132

2C6D8A15A99A01B0

Sign.midi

C5353C06CED7B539ED6393E0A23CFD13942A3FFA1499BC4CE

D78EE8FEB18C252

Neighbor.midi

B27ECEEDEC33FC3AFF9875CE47132400BB22A8667C66648D5

7054A65E4BD64D6
Mike.midi

A5949E03D197D70506FE25D9BF7D534E54C04424D111BFE0E81

3714354DE9B22

Metro.midi

06200CE96FDD63CD859BEA1A9BCED664195F023BF387E9E2C

DC554CCF287A43E

Extra.midi

4F0EA7AF73EA52C654329D17805F11BDC83B752A56A73F34C8

DCC6D999C7E698

Stage2.exe

drafxc[.]xyz C2

http://www.aksk.gov.al/
mailto:info@aksk.gov.al

Address: “Papa Gjon Pali II” Street, No. 3, Tira na; www.aksk.gov.al

info@aksk.gov.al; Tel./Fax: 04 2221 039
14

Recommendations

The National Cybersecurity Authority recommends:

Immediate blocking of the above-mentioned Indicators of Compromise on your protective
devices.
• Continuous analysis of logs coming from SIEM (Security Information and Event Management)

systems.
• Training of non-technical staff regarding phishing attacks and methods to avoid infection.

• Installation of network perimeter devices that perform deep traffic inspection, relying not only
on access control lists but also on traffic behavior (NextGen Firewalls).
• Segmentation of identified systems into separate VLANs, applying access control lists across

the entire network perimeter. Web services must be separated from their databases, and Active

Directory should reside in its own VLAN.

• Application and use of the LAPS technique for Microsoft systems, for managing Local

Administrator Passwords.
• Application of traffic filters for remote access to hosts (employees/third parties/clients).

• Implementation of solutions that filter, monitor, and block malicious traffic between web
applications and the internet, such as a Web Application Firewall (WAF).

• Conducting behavior-based traffic analysis for endpoint devices, through the use of EDR/XDR

solutions. This allows for the detection of malicious files not only by signature but also by
behavior.

• Designing and implementing an Identity Access Management (IAM) solution to control user
identities and privileges in real-time, following the zero-trust principle.

http://www.aksk.gov.al/
mailto:info@aksk.gov.al

