

REPUBLIC OF ALBANIA

NATIONAL CYBER SECURITY AUTHORITY

CYBER SECURITY ANALYSIS DIRECTORATE

Technical analysis for the malicious file

Lockbit 4.0

Version: 1.0

Date: 08/01/2025

CONTENT

Technical Information ... 3

Lockbit powershell version file analysis .. 4

Dynamic Analysis: ... 12

MITRE ATT&CK ... 14

Indicators of Compromise ... 15

Recommendations .. 15

LIST OF FIGURES

Figure 1 Powershell file .. 5
Figure 2 The modified file .. 6
Figure 3 Code in PowerShell runtime ... 6
Figure 4 Second phase powershell script .. 7
Figure 5 Calling the do-Exec function .. 7
Figure 6 Implementing the Do-Exec function .. 8
Figure 7 Payload extraction .. 8
Figure 8 4d5a magic bytes .. 8
Figure 9 dll file.. 9
Figure 10 Lockbit Ransomware .. 9
Figure 11 Exec function .. 10
Figure 12 function GPAddr .. 11
Figure 13 function GFnc ... 11
Figure 14 Ransomware note ... 13
Figure 15 Lockbit black .. 14

The report was designed to document and analyze attempted cyber attacks against Critical and

Important infrastructures in the Republic of Albania. The content of this report is based on the

information available up to the date of completion of the analysis.

The purpose of this report is to inform and raise awareness among interested parties about the

documented cyber incident. The report should not be treated as final until its final update.

This report has limitations and should be interpreted with caution!

Some of these restrictions include:

First phase:

Sources of information: The report is based on information available at the time of its preparation.

However, some aspects may differ from actual developments.

Second phase:

Analysis details: Due to resource limitations, some aspects of the malicious file may not have been

analyzed in depth. Any additional unknown information may reflect changes in the report.

Third phase:

Information Security: To protect sources and confidential information, some details may be

redacted or not included in the report. This decision was made to maintain the integrity and security

of the data used.

NCSA reserves the right to change, update, or amend any part of this report without prior notice.

This report is not a final document.

The findings of the report are based on the information available at the time of the investigation

and analysis. There is no guarantee regarding possible changes or updates to the information

reported during the subsequent period. The authors of the report do not assume responsibility for

the misuse or consequences of any decision-making based on this report.

Information Tech

Lockbit 4.0 is a well-known ransomware malware variant that has gained popularity due to its

efficiency and speed in carrying out attacks. This type of ransomware is used to blackmail

businesses and individuals into paying a ransom to recover data that has been encrypted.

Key Features of Lockbit 4.0:

1. Speed and Efficiency: Lockbit 4.0 is one of the fastest ransomware, which has the ability

to encrypt files very quickly. This makes it more difficult for security experts to stop the

attack in its early stages.

2. Double Extortion Exploitation: This malware often uses a technique called "double

extortion", where in addition to encrypting files, hackers threaten to release sensitive

information affected by the attack if the ransom is not paid.

3. Autonomy and Ability to Use New Codes: Lockbit 4.0 is capable of creating new variants

of itself, using automated systems to improve coding and distribution.

Technical Information:

• Infection Method: It often uses exploits of vulnerabilities in widely used software and

applications, as well as social engineering techniques to distribute malware.

• File Encryption: It uses strong encryption algorithms, such as AES (Advanced Encryption

Standard) and RSA, to encrypt files and requires a private key to decrypt them.

• Publication Threat: It uses external services to store and publish stolen information if a

ransom is not paid.

• Ransomware-as-a-Service (RaaS): Lockbit 4.0 is part of a "RaaS" model, where

ransomware creators provide the service to other criminals who can use the software to

carry out attacks, in return for a share of the ransom.

Lockbit 4.0 continues to evolve and is a powerful threat to cybersecurity, requiring continued

attention and appropriate protective measures.

Lockbit powershell version file analysis

The file is a .ps1 (powershell script) file. If we access this file through Notepad, we will avoid the

possibility of executing it, but we can also identify a piece of code that contains the fnD function

that takes a vector of type Int64 as a parameter.

Figure 1Powershell file

For loop that continues the range of arguments are passed as parameters from the terminal. The

$global:ProgressPreference variable is set to SilentlyContinue so that during the execution of

the script the user is not visually shown what is happening.

The most interesting part is the content of the @data variable, which contains a variety of numbers.

The $am variable checks whether the AmsiUtils class exists. If the class exists, the code continues

and changes the value of amsiInitFailed to True .

This is used to disable AMSI in powershell. AMSI is a security feature in Windows that allows

antimalware software to analyze PowerShell commands and scripts for malicious intent. It then

checks the major version of PowerShell, and in this case, checks to see if it is version 2.

Setting up 32-bit PowerShell on a 64-bit system.

$ps86 = "$($env:SystemRoot)\SysWOW64\WindowsPowerShell\v1.0\powershell.exe"

At this stage, a new hidden PowerShell process has been started.

fnD function is a function that takes as a parameter a list of Int64 numbers and transforms them

into a text string using ASCII encoding. Uses the bitwise AND operator to store only the lower 7

bits of a number (standard for ASCII). The bytes are processed and stored in the $db vector.

The problem in this case is in the for loop at the end of the file because that's where the function

calls are made via iex (Invoke-Expression). So we need a way to bypass it.

Figure 2 The modified file

We modify the code by setting the variable $c to the value of the variable $scb[$i] from the for

loop and then after exiting the loop we display its output using Log.

Figure 3Code in PowerShell runtime

In this way we can identify the code that will be executed next. The output is a fairly long code

that we can save in a new file with the extension . ps1 and we can study the other functionalities

it has.

Figure 4 Second phase powershell script

The new file contains a fairly high number of functions, and what is interesting is their random

names without any meaning. In this case, the malicious actors hide the names of the functions to

make detection more difficult, both by antivirus software and during the reverse engineering

process.

The first function that starts the execution chain is the Do-Exec function, which takes two

parameters: the payload and a length value of 124416.

Figure 5 Calling the do-Exec function

Figure 6 Implementing the Do-Exec function

What we can do at this stage is take the payload passed as a parameter and attempt to extract it as

a file on our computer

Figure 7 Payload extraction

To verify whether the extracted file is in the exe or dll format, we check its hexadecimal values.

As shown in the photo, by looking at the header, we can see '4D 5A,' indicating that we are

dealing with either an executable file (exe) or a dynamic link library (DLL).

Figure 84d5a magic bytes

Figure 9dll file

When we checked the file's entropy, we found sectors with values above 7, which indicates code

packing. If we place this file on a Windows operating system with Windows Defender enabled,

we will notice that the antivirus can identify it as Lockbit ransomware due to its file signature.

Figure 10Lockbit Ransomware

The Do-Exec function takes two parameters. The payload is a relatively long string of characters,

stored in the $zipBytes variable, which is converted from a base64 string and then stored in a

new variable, $ExeImage, as a byte array.

The call to the Exec function is recorded, as it is the most important function of the malicious

file.

'Param' specifies the parameters that the function accepts.

Figure 11 Exec function

[Byte[]] $PEBytes - This is a required parameter that represents a byte array used to create the

process.

[String[]] $ComputerName - A string (hostname) where this code will be executed. This

parameter is optional.

[String] $FuncReturnType - Specifies the return type of the function. Possible values are

'WString', 'String', or 'Void'. The default value is 'Void'.

[String] $ExeArgs - The arguments to be passed to the executor. This is an optional parameter.

[Int32] $ProcId - The process ID to use. This parameter is optional.

[String] $ProcName - The process name to use. This is also an optional parameter.

[Switch] $ForceASLR - A switch parameter that, if set, forces the activation of Address Space

Layout Randomization (ASLR).

[Switch] $DoNotZeroMZ - A switch parameter that, if set, prevents the MZ field (executable

file header) from being zeroed.

Set-StrictMode -Version 2 - Enables error handling, helping to detect errors in the code.

The main implementation of the Exec function is located within the $RemoteScriptBlock

variable, which contains a total of 28 functions.

Figure 12 function GPAddr

1. Param - Specifies the parameters that the function accepts:

o [String] $Module - The name of the module (DLL) from which the address will

be retrieved.

o [String] $Procedure - The name of the procedure for which the address should

be retrieved.

2. Variable Manipulations and Initialization - The function includes complex variable

manipulations and reflection initializations to dynamically find and use methods from the

system assembly. Parts like "{1}{2}{3}{0}" are used to construct the names of

commands and methods in a coded manner.

3. Loading - The code requires the System namespace to contain the

UnsafeNativeMethods method from Microsoft.Win32, which provides access to

unsafe methods like GetModuleHandle and GetProcAddress.

4. Methods for Handling Modules and Procedures:

o $GetModuleHandle - Retrieves the GetModuleHandle method.

o $GetProcAddress - Retrieves the GetProcAddress method, which returns a

pointer to the specified procedure in the given module.

This function is designed to exploit dangerous methods from UnsafeNativeMethods, allowing

direct access to addresses in memory.

Figure 13 function GFnc

Achievement HOW EVENT IN function GFncs .

GPAddr : it's function The created MORE FrONt THAT GET the address of a procedure BY A

module specific .

kernel32.dll: This is dll of Windows that CONTAINS functions CoRe THE SYSTEM operational

, including VirtualAlloc .

VirtualAlloc : This is A function THAT USE ABOUT THE RESERVED OR ABOUT THE

CLUE ROOM memory IN SPACE virtual THE process caller .

${WIN32FeUëNctIëoëoNs} | &("{2}{1}{0}"-f' ber ','d- Mem','Ad ') ("{1}{0}{2}{3}"-f' otePrope

', ' N','r','ty ') -Name ("{0}{1}{3}{2}{4}" -f'Vi',' rtualP ','e','rot', ' ct ') -Value ${

VIRTUëAlPRoTëECt }

In summary, this code creates a delegate for the VirtualProtect function based on its address and

stores it in a Windows function object or collection, allowing VirtualProtect to be called directly

by other code that can use this object. This mode is typical in scenarios where direct access to

operating system functions is needed for memory manipulation or to perform low-level tasks. level

.

Based on the code snippets, there are several elements that are typical for a DLL injection process

in a Windows application. This code can be used for DLL injection:

1. Using GetProcAddress and GetModuleHandle : These functions are commonly used to

find the addresses of functions in loaded DLLs, which is a common step in DLL injection.

2. VirtualAlloc and VirtualProtect : These functions are used to allocate space in virtual

memory and change memory protection attributes. This is a common step in DLL injection

to create a suitable location for loaded code or to ensure that the memory is executable.

3. Creating delegates for system functions : This is another step that can be used to call

system functions from loaded code, a common technique in DLL injection schemes to

ensure that the loaded DLL can interact with the operating system.

4. Reference to UnsafeNativeMethods : The use of these methods suggests that the code is

interacting with low-level functions of the operating system, which is also a sign of a

possible injection process.

Dynamic Analysis:

If we click on the powershell file, we will see a process named 5182.tmp that consumes a high

percentage of CPU .

After the process is finished executing, what we see is the change in the Windows wallpaper and

a file on the desktop kF0wnCN24.README.txt. which is the note of the Lockibt 4.0

ransomware .

Figure 14Ransomware note

Figure 15Lockbit black

MITRE ATT&CK

Indicators of Compromise

2f5051217414f6e465f4c9ad0f59c3920efe8ff11ba8e778919bac8bd53d915c LBB_PS1

1BE78F50BB267900128F819C55B8512735C22418DC8A9A7DD4FA1B30F45A5C93 .extracted.ps1

998AECB51A68208CAA358645A3D842576EEC6C443C2A7693125D6887563EA2B4 decompress.dll

RECOMMENDATIONS

The National Cyber Security Authority recommends:

• Immediate blocking of the Indicators of Compromise, mentioned above, on your protective

devices.

• Continuous analysis of logs coming from SIEM (Security Information and Event

Management).

• Training non-technical staff about "Phishing" attacks and ways to avoid infection from them.

• Installing network perimeter devices that perform deep traffic analysis based not only on access

list rules but also on its behavior (NextGen Firewalls).

• The identified systems should be segmented into different VLANs, applying "Access control

lists for the entire network perimeter", web services should be separated from their databases,

Active Directory should be in a separate VLAN.

• Application and use of the LAPS technique for Microsoft systems, for managing Local

Administrator passwords.

• Apply traffic filters in the case of remote access to hosts (employees/third parties/customers).

• Implement solutions that filter, monitor, and block malicious traffic between Web applications

and the internet, Web Application Firewall (WAF).

• Conduct traffic analysis at the behavior level for end devices, applying EDR, XDR solutions.

This brings the analysis of malicious files not only at the signature level but also at the behavior

level.

• Design a user access management solution "Identity Access Management" to control user

identity and privileges in real time according to the "zero-trust" principle.

