

REPUBLIC OF ALBANIA

NATIONAL CYBER SECURITY AUTHORITY

CYBER SECURITY ANALYSIS DIRECTORATE

Technical analysis for malware

Remittance Advice.shtml.zip

Version: 1.0

Date: 21/01/2025

CONTENT

Technical Information .. 4

Analysis of the Remittance Advice.shtml file.. 4

MITRE ATT&CK ... 10

Indicators of Compromise ... 10

Recommendations .. 11

LIST OF FIGURES

Figure 1 Page in browser .. 4
Figure 2 Post request ... 5
Figure 3 Remittance Advice.shtml code ... 5
Figure 4 atob function ... 6
Figure 5 Finding the type of the browser .. 7
Figure 6 Manipulation of HTML elements ... 8
Figure 7 Getting the IP of the user .. 8
Figure 8 Sending data using AJAX... 9
Figure 9 Mitre ATT&CK .. 10

This report has limitations and should be interpreted with caution!

Some of these limitations include:

First phase:

Sources of information: The report is based on information available at the time of its preparation.

However, some aspects may differ from actual developments.

Second phase:

Analysis details: Due to resource limitations, some aspects of the malicious file may not have been

analyzed in depth. Any additional unknown information may reflect changes in the report.

Third phase:

Information Security: To protect sources and confidential information, some details may be

redacted or not included in the report. This decision was made to maintain the integrity and security

of the data used.

NCSA reserves the right to change, update, or amend any part of this report without prior

notice.

This report is not a final document.

The findings of the report are based on the information available at the time of the investigation

and analysis. There is no guarantee regarding possible changes or updates to the information

reported during the subsequent period. The authors of the report do not assume responsibility for

the misuse or consequences of any decision-making based on this report.

Technical Information

A phishing campaign targeting infrastructures in Albania has been identified, with a malware

attached named Remittance Advice.shtml.zip. The zip file can be extracted and the document

displayed is Remittance Advice.shtml, which is in Server-Side Includes HTML format.

Analysis of the Remittance Advice.shtml file

After accessing the file, a page appears in the browser that has two fields to fill out, the first of

which has the default value redacted@test.net. Also visible is the official Excel logo and a

background-image that is placed using CSS in the background of the page to deceive the victim

that we are dealing with a Login portal related to a work document.

Figure 1Page in browser

Currently, if we try to enter non-real credentials as input to the page in the network section of the browser,

a POST request is recorded to the url hxxps[://]obtechgmx[.]online/ml/morgana/new-excel/log[.]php

with the parameters as payload with a Form Data object that has fields like:

email, password, verify, userBrowser, userIP, OSName.

Figure 2Post request

The purpose of this file is to receive information and send it to a server, so to understand the logic,

we can open this file with a text editor and analyze the code.

Figure 3Remittance Advice.shtml code

The code is a common HTML format that contains the inputs, the CSS code for the design of the

page, and the JavaScript code where the logic is implemented.

In the JavaScript code, a variable named encodedStringAtoB is identified that has a base64

value:

aHR0cHM6Ly9vYnRlY2hnbXgub25saW5lL21sL21vcmdhbmEvbmV3LWV4Y2VsL2xvZy

5waHA, understood in the next line of code where a variable named icq_processor is created and

decoded using the atob() function, a function that decodes character strings in base64.

Figure 4 atob function

If we decode it, we see that the URL as output gives us the value of the URL that sent the post

request to:

hxxps[://]obtechgmx[.]online/ml/morgana/new-excel/log[.]php.

Then we have a function in jQuery to detect and identify the type of browser that the user is

using.

Code structure and logic:

1. Main function

The function called browserDetection is added to jQuery using $.extend. It accepts

an argument called addClass, which controls whether to add a class to the <body>

element.

2. Main variables

o theBody: Refers to the <body> element of the HTML document.

o userAgent: Gets the browser information from the navigator.userAgent object (this

shows details about the operating system and browser).

o msieIndex: Finds the position where the word "MSIE" appears in the userAgent, which

indicates the Internet Explorer (IE) browser.

3. Browser Detection Logic

o Internet Explorer (IE ≤ 10): If userAgent contains "MSIE", the browser version is

retrieved and returned as 'IE' + version (e.g., IE8, IE9, etc.).

o Internet Explorer 11: Checks for the word "Trident/".

o Chrome and Opera: If userAgent contains "Chrome", checks for "OPR" to

distinguish Opera from Chrome.

o Safari: If userAgent contains "Safari" and does not contain "Chrome", it is identified

as Safari. If it contains "CriOS", it is Chrome for iOS.

o Firefox: If userAgent contains "Firefox", it is identified as Firefox.

o Unrecognized browser: If it does not match any of the cases above, the browser is set

to "notDetected".

4. Add class (optional):

If the addClass argument is true, the identified class (browserClass) is added to the

<body> element.

5. Result:

The function returns the detected browser name as a string.

Figure 5 Finding the type of the browser

The code then continues with jquery to manipulate URLs and interact with some page elements.

let href = $(location).attr('href'): Gets the full URL of the current page

let divide1 = href.split("@"): Splits the URL into two parts using the @ symbol. The part after

the @ will be stored in divide1[1]

let divide2 = href.split("#"): Splits the URL into two parts using the # symbol. The part after the

will be stored in divide2[1]

the _domain: The part of the URL after the @ is saved.

$('. dotDomain '). text (divide1[1]): Places the text stored in divide1[1] inside the HTML element

with the dotDomain class.

$('# txtEmail ').val (divide2[1]): Places saved text in divide2[1] as the value of the input with id

txtEmail.

$('# dblEmail ').val ('redacted@test.net'): Places text 'redacted@test.net' as the value of the

input with id dblEmail.

Figure 6 Manipulation of HTML elements

let userIP = '': $.getJSON('https://api.ipify.org?format=json', function(data){ userIP = data.ip; });

userIP : Initialized as an empty string to store the IP address.

$.getJSON: Performs an AJAX request to get the user's IP address from api.ipify.org.

data.ip: Contains the IP address returned by the API and stored in userIP.

We also obtain information about the operating system the user is using, which is done through the control

via the navigator.

 Figure 7 Getting the IP of the user

failedLoginAttempts variable stores the number of unsuccessful authentication attempts. It is

initially initialized to 0.

$('#btn-submit').on('click', ...): This specifies that when the button with ID btn-submit is

clicked, the given function will be executed.

$('#btn-submit').on('click', ...): This specifies that when the button with ID btn-submit is

clicked, the given function will be executed.

('.pwdErr').text(''): After each click, any password error message is deleted.

event.preventDefault(): Prevents the default action of the button (in this case, not sending

information).

var password = $('#txtPass').val(): Gets the password value from the field with ID txtPass and

stores it in the password variable.

$('#txtPass').val(''): After receiving the password, it visually clears the field to ensure that the

user does not see the password. Now we have the final stage which is sending the data using

Asynchronous JavaScript and XML (AJAX)

Figure 8 Sending data using AJAX

success: This function is executed if the AJAX request completes successfully.

$.parseJSON(data): JSON returned from the server and stored in the variable i.

if (i.status == 200):

If the server returns a status of 200 (successful), an error message about the password is displayed

and some other changes are made to the form fields.

success: This function is executed if the AJAX request completes successfully .

$.parseJSON(data): JSON returned from the server and stores it in the i variable .

if (i.status == 200): If the server returns a status of 200 (successful), an error message about the

password is displayed and some other changes are made to the form fields.

failedLoginAttempts++: Increases the number of failed login attempts

if (failedLoginAttempts === 3): When the number of unsuccessful attempts reaches 3, the user

is redirected to https://office.com (the official Microsoft 365 website).

Since the data is sent and the status is 200, the failedLoginAttemps variable is used simply to

prevent the victim from sending data repeatedly.

MITRE ATT&CK

Figure 9 Mitre ATT&CK

Indicators of Compromise

e4cbd7f75ce973485f27b2411b7b39b678461ca42e99de5e682149299dd68

26b

Remittance

Advice.shml.zip

hxxps://obtechgmx.online/ml/morgana/new-excel/log.php URI

Recommendations

The National Cyber Security Authority recommends:

• Immediate blocking of the Indicators of Compromise, mentioned above, on your firewalls.

• Continuous analysis of logs coming into SIEM (Security Information and Event Management).

• Training non-technical staff about "Phishing" attacks and ways to avoid infection from them.

• Installing network perimeter devices that perform deep traffic analysis based not only on access

list rules but also on its behavior (NextGen Firewalls).

• The identified systems should be segmented into different VLANs, applying "Access control

lists for the entire network perimeter", web services should be separated from their databases,

Active Directory should be in a separate VLAN.

• Application and use of the LAPS technique for Microsoft systems, for managing Local

Administrator passwords.

• Apply traffic filters in the case of remote access to hosts (employees/third parties/customers).

• Implement solutions that filter, monitor, and block malicious traffic between Web applications

and the internet, Web Application Firewall (WAF).

• Conduct traffic analysis at the behavior level for end devices, applying EDR, XDR solutions.

This brings the analysis of malicious files not only at the signature level but also at the behavior

level.

• Design a user access management solution "Identity Access Management" to control user

identity and privileges in real time according to the "zero-trust" principle.

